PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 (SET-B) Hints \& Solution

Section - 1

1.(b) Displacement $(\overrightarrow{\Delta \mathrm{S}})=2 \operatorname{rsin} \frac{\theta}{2}=2 \operatorname{rsin} \frac{180^{\circ}}{2}=2 \mathrm{r}$

Distance $=r \theta=\pi r$
2.(c) $\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$
or, $\mathrm{u}^{2}=\mathrm{R}_{\text {max }} \times \mathrm{g}$
Again $\mathrm{H}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{80 \times 10}{2 \times 10}=40 \mathrm{~m}$
3.(b)

Tension $=$ wt. of part BC
$T=\frac{M}{L}(L-y) g=\frac{M g(L-y)}{L}$
4.(a) $\quad \Delta \mathrm{P}=\frac{4 \mathrm{~T}}{\mathrm{R}} \propto \frac{1}{\mathrm{R}}$
$\frac{\Delta \mathrm{P}_{1}}{\Delta \mathrm{P}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{1}{2}$
5.(c) Since cubical expensivity $=3 \times$ linear expasivity

$$
=3 \times \frac{\alpha}{3}=\alpha
$$

So remains stationary
6.(d) $\mathrm{mgh}=\mathrm{ms} \Delta \theta$
or, $\Delta \theta=\frac{\text { gh }}{\mathrm{s}}=\frac{10 \times 21}{4200}=0.05^{\circ} \mathrm{C}$
7.(c) $\mathrm{Q}=\sigma \mathrm{AtT}^{4}$
$\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{4}=\frac{1}{16}$
8.(d) $\frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}$
$\frac{9}{4}=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}$
or, $\frac{a_{1}+a_{2}}{a_{1}-a_{2}}=\frac{3}{2}$
or, $2 \mathrm{a}_{1}+2 \mathrm{a}_{2}=3 \mathrm{a}_{1}-3 \mathrm{a}_{2}$
or, $a_{1}=5 a_{2}$
or, $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{5}{1}$
9.(b) Since $\mathrm{C}^{\prime}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}}$

Since $\mathrm{t}=0$
So, $\mathrm{C}^{\prime}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
$\mathrm{C}^{\prime}=\mathrm{C}_{0}$
10.(c)

Resultant of E_{1} and $E_{2}=E^{\prime}$ along $O A$ of magnitude E_{1}.

The field due to charge at $\mathrm{A}=\mathrm{E}$ " along OP of magnitude E_{1}
So resultant of E^{\prime} and $\mathrm{E}^{\prime \prime}$ is zero.
11.(d) $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{\mathrm{V}^{2}}{\rho l} \mathrm{~A} \quad \mathrm{P} \propto \frac{1}{\rho}$
12.(a) $\mathrm{d} \leq \lambda$
13.(d)
$\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK}}} \quad \sqrt{2 \mathrm{mK}}=\frac{\mathrm{h}}{\lambda}$
$\mathrm{mK}=$ cost. $\quad \mathrm{k} \propto \frac{1}{\mathrm{~m}}$
$\mathrm{m}_{\mathrm{e}}<\mathrm{m}_{\mathrm{p}} \quad \therefore$ K. $\mathrm{E}_{\mathrm{e}}>$ K. E_{p}
$R=r_{0} A^{1 / 3}$
$\frac{\mathrm{R}_{A l}}{\mathrm{E}_{\mathrm{sn}}}=\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right)^{1 / 3}=\left(\frac{27}{125}\right)^{1 / 3}=3: 5$
16.(d) $\mathrm{f}=\frac{v}{4 l} \quad \mathrm{n}=\frac{v}{4 l} \Rightarrow l=\frac{v}{4 \mathrm{n}}$
17.(d) $v_{\mathrm{n}} \propto \frac{1}{\mathrm{n}} \quad \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^{2}$
$\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{m} v^{2}}{\mathrm{r}} \propto \frac{\left(\frac{1}{\mathrm{n}}\right)^{2}}{\mathrm{n}^{2}} \propto \frac{1}{\mathrm{n}^{4}}$
18.(d)
19.(b)
20.(d)
21.(a)
22.(a)
23.(c)
24.(b)
25.(b) Number of neutron = At. mass - At. no

$$
70-30=40
$$

26.(d)
27.(a) $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}=0.2 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$0.2 \times \mathrm{x}=0.1 \times 10 \quad \mathrm{x}=\frac{0.1 \times 10}{0.1}=5 \mathrm{~m} l$
28.(d) $\mathrm{W}=\mathrm{ZIt}$
$0.504=\frac{1}{96500} \times \mathrm{x} \times 2 \times 60 \times 60$
$\mathrm{x}=6.755$
$\mathrm{W}=\mathrm{Z} \times \mathrm{I} \times \mathrm{t}=\frac{8}{96500} \times 6.755 \times 2 \times 60 \times 60$

$$
=4.032 \mathrm{~g} \approx 4 \mathrm{~g}
$$

29.(a) $K=\lim _{x \rightarrow 0} x \cos \frac{1}{x}=O \times$ finite value $=0$
30.(c) $\frac{\mathrm{d}}{\mathrm{dx}} \log _{\mathrm{e}}|\mathrm{x}|=\frac{\mathrm{d}}{\mathrm{d}|\mathrm{x}|} \log |\mathrm{x}| \frac{\mathrm{d}}{\mathrm{dx}}|\mathrm{x}|=\frac{1}{|\mathrm{x}|} \cdot \frac{|\mathrm{x}|}{\mathrm{x}}=\frac{1}{\mathrm{x}}$
31.(d) Let $\mathrm{y}=3^{\mathrm{x}}$

$$
\begin{gathered}
\mathrm{dy}=3^{\mathrm{x}} \log _{\mathrm{e}} 3 \mathrm{dx} \quad \frac{1}{\log _{e} \mathrm{~d}} \mathrm{dy}=3^{\mathrm{x}} \mathrm{dx} \\
\begin{aligned}
\log _{\mathrm{e}} 3 & \frac{1}{1+y^{2}}
\end{aligned}=\frac{1}{\log _{e} \mathrm{e}} \tan ^{-1}(\mathrm{y})+\mathrm{c} \\
\\
\\
=\frac{1}{\log _{\mathrm{e}} 3} \tan ^{-1}\left(3^{x}\right)+\mathrm{c}
\end{gathered}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2079-03-18 (SET-B) Hints \& Solution32.(c) $\mathrm{dr}=\Delta \mathrm{r}=5.1-5=0.1$
$\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{dA}=2 \pi \mathrm{rdr}=2 \times \pi \times 5 \times 0.1=\pi \mathrm{cm}^{2}$
33.(b) Area $=\int_{0}^{4} y \& x=\int_{0}^{4} \frac{x^{2}}{4} d x=\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4}$

$$
=\frac{16}{3} \text { sq. units }
$$

34.(c) $\frac{a+b w+w^{2}}{a w+b w^{2}+c}=\frac{w^{2}\left(a+b w+c w^{2}\right)}{a w^{3}+b w^{4}+c w^{2}}$

$$
=\frac{w^{2}\left(a+b w+c w^{2}\right)}{a+b w+c w^{2}}=w^{2}
$$

35.(c) $x+\frac{1}{x}=2 x^{2}$
or, $3 x^{2}-x^{2}-1=0$
It is a cubic, so it has 3 roots. If one root is $x=1$ then other 2 more roots.
36.(b) $\mathrm{S}_{\infty}=\left(\frac{1}{7}+\frac{1}{7^{3}}+\ldots \ldots \ldots\right)+\left(\frac{2}{7^{2}}+\frac{2}{7^{4}}+\ldots \ldots.\right)$

$$
=\frac{\frac{1}{7}}{1-\frac{1}{7}}+\frac{\frac{2}{49}}{1-\frac{1}{49}}=\frac{3}{16}
$$

37.(b) We have
A. $\operatorname{adj}(\mathrm{A})=|\mathrm{A}| \mathrm{I}$
$\begin{aligned} \therefore \lambda=|\mathrm{A}| & =\left|\begin{array}{cc}\cosh \mathrm{x} & -\sinh \mathrm{x} \\ -\sinh \mathrm{x} & \cosh \mathrm{x}\end{array}\right| \\ & =\cosh ^{2} \mathrm{x}-\sinh ^{2} \mathrm{n}=1\end{aligned}$
38.(d) Set A contains n elements number of elements in $\mathrm{A} \times \mathrm{A}=\mathrm{n}^{2}$ no. of relations on $\mathrm{A}=$ number of subsets of $A \times A=2^{n^{2}}$
39.(d) We have

$$
\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2} \mathrm{x}^{2}+\ldots . .+\mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}(1+\mathrm{x})^{\mathrm{n}}
$$

Putting $\mathrm{x}=3$

$$
\mathrm{c}_{0}+3 \mathrm{c}_{1}+9 \mathrm{c}_{2}+\ldots \ldots \ldots+3^{n} \mathrm{c}_{\mathrm{n}}=4^{n}
$$

40.(d) Number selection $={ }^{5} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{2}$

$$
=10 \times 10=100
$$

41.(a) $\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{-4-6-6}{\sqrt{4+4+1}}=-\frac{16}{\sqrt{9}}=-\frac{16}{3}$
42.(b) Here a, b, c are in A.P.
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$
$\Rightarrow \mathrm{a}-2 \mathrm{~b}+\mathrm{c}=0$
$\therefore(1-2)$ lines on the line $a x+b y+c=0$
Hence, $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ represents a family of lines passing trough $(1,-2)$
43.(b) Here $\mathrm{h}^{2}-\mathrm{ab}=6^{2}-4.9=0$
\therefore lines are real and coincident.
44.(d) $\quad(x-5)^{2}+(y-7)^{2}=3^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9$
\therefore It is a circle
45.(d) $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}=\frac{4}{2}=2$
46.(a) $l=\mathrm{m}=\mathrm{n}$
$\therefore l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$

$$
3 l^{2}=1 \quad \therefore \quad l=\mathrm{m}=\mathrm{n}= \pm \frac{1}{\sqrt{3}}
$$

$\frac{b \cos C+b \cos A+\cos B+a \cos B}{b(c+a)}$
$=\frac{c+a}{b(c+a)}=\frac{1}{b}$
48.(b) Here comparing with $\operatorname{asin} x+b \cos x=c$
$\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=2$
$\therefore c>\sqrt{a^{2}+b^{2}}=\sqrt{2}$
\therefore There is no solution.

49.a	$50 . \mathrm{a}$	$51 . \mathrm{b}$	$52 . \mathrm{c}$	$53 . \mathrm{d}$	$54 . \mathrm{a}$
$55 . \mathrm{b}$	$56 . \mathrm{b}$	$57 . \mathrm{a}$	$58 . \mathrm{c}$	$59 . \mathrm{b}$	$60 . \mathrm{d}$

Section - II

61.(d) $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}$
$\frac{g_{\text {planet }}}{g_{\text {earth }}}=\frac{M_{p}}{M_{e}} \times\left(\frac{R_{e}}{R_{p}}\right)^{2}=\frac{1}{2} \times(2)^{2}=2$
$\therefore \quad g_{p}=2 \mathrm{~g}$
62.(b) $\quad \mathrm{F}_{\max }=\mathrm{m} \omega^{2} \mathrm{~A}=\mathrm{m}\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2} \mathrm{~A}$

$$
\begin{aligned}
& =\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \mathrm{~mA} \\
& =\frac{4 \pi^{2} \times 50 \times 10^{-3} \times 0.1}{0.1^{2}}=20 \mathrm{~N}
\end{aligned}
$$

63.(b) Total weight $=$ wt. of water displaced $m_{1} g+m_{2} g=\left(v_{1}+v_{2}\right) \rho_{w} g$
$\mathrm{m}_{1}+10=\left(\frac{\mathrm{m}_{1}}{11}+\frac{10}{0.2}\right) \times 1$
$\mathrm{m}_{1}=44 \mathrm{gm}$
64.(c) Tension (=150) < weight

So acceleration down ward
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
or, $\quad 20 \times 9.8-150=20$ a
or, $\quad \mathrm{a}=2.3 \mathrm{~m} / \mathrm{s}^{2}$
65.(a) $\frac{\Delta l}{l_{1} \alpha}=\Delta \theta$
$\frac{0.0005 \mathrm{~mm}}{1 \mathrm{~mm} \times 1.32 \times 10^{-5}}=\Delta \theta$
$\Rightarrow \Delta \theta=37.8^{\circ} \mathrm{C}$
66.(a) $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\mathrm{T}_{2}=395.85 \mathrm{~K}$
$\therefore \quad$ Rise in temperature $\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}$

$$
\begin{aligned}
& =395.85-300 \\
& =95.85 \mathrm{~K}
\end{aligned}
$$

67.(c) $\quad \mathrm{f}=\frac{1}{2 l} \sqrt{\frac{\mathrm{~T}}{\mu}}$
or, $\mathrm{f} \propto \frac{1}{l} \quad$ or, $\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\frac{l_{1}}{l_{2}}$
or, $\quad \frac{320}{256}=\frac{l}{l-10}$
$\Rightarrow l=50 \mathrm{~cm}$
68.(c)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-03-18 (SET-B) Hints \& Solution

$\mathrm{E}_{1}=\mathrm{E}_{2}$
or, $\frac{9 \times 10^{9} \mathrm{Q}_{1}}{\mathrm{x}^{2}}=\frac{9 \times 10^{9} \mathrm{Q}_{2}}{(12-\mathrm{x})^{2}}$
or, $\frac{2 \times 10^{-6}}{\mathrm{x}^{2}}=\frac{8 \times 10^{-6}}{(12-\mathrm{x})^{2}} \quad$ or, $4 \mathrm{x}^{2}=(12-\mathrm{x})^{2}$
or, $2 \mathrm{x}=12-\mathrm{x} \quad$ or, $\mathrm{x}=4 \mathrm{~cm}$
69.(b) $\mathrm{d} \sin \theta=\mathrm{n} \lambda$
or, $\frac{1}{\mathrm{~N}} \sin 30^{\circ}=3 \times 5555 \times 10^{-10}$
or, $\mathrm{N}=3000$ lines $/ \mathrm{cm}$
70.(a) $E=I_{1}(R+r)$
or, $E=3(1.8+r)$
Again $\mathrm{E}=2(2.9+\mathrm{r}) \quad \Rightarrow \mathrm{r}=0.4 \Omega$
71.(c) $\mathrm{E}=\frac{1}{2} \mathrm{~B} \omega l^{2}$
$=\frac{1}{2} \times 0.4 \times 32 \times 0.5^{2}$

73.(c) $\frac{1}{\lambda_{\mathrm{L}}}=\mathrm{R}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
$\frac{1}{\lambda_{\mathrm{B}}}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
$\frac{\lambda_{\mathrm{B}}}{\lambda_{\mathrm{L}}}=\frac{27}{5}$
$\therefore \quad \lambda_{\mathrm{B}}=\frac{27}{5} \times 1215 \AA=6561 \AA$
74.(b) $\frac{\mathrm{C}}{\mathrm{C}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\frac{1 \times 10^{6}}{4 \times 10^{6}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\mathrm{T}_{1 / 2}=10 \mathrm{hr}$.

$$
\begin{aligned}
\text { Again } \frac{\mathrm{C}}{\mathrm{C}_{0}} & =\left(\frac{1}{2}\right)^{\frac{100}{10}} \\
\mathrm{C} & =4 \times 10^{6} \times\left(\frac{1}{2}\right)^{10}=3.9 \times 10^{3} / \mathrm{sec}
\end{aligned}
$$

75.(c)

76.(c)

77.(a)

78.(c) $\frac{\text { Wt. of metal oxide }}{\mathrm{EW} \text { of metal oxide }}=\frac{\mathrm{Wt} \text {. of water }}{\mathrm{EW} \text { of oxygen }}$ $\frac{0.426}{x+8}=\frac{0.12}{9}$

$$
x=23.95 \approx 24
$$

79.(c) EW of element $=\frac{\text { Mass of element }}{\text { Mass of oxygen }} \times 8$

$$
=\frac{53}{47} \times 8=9.0212 \approx 9
$$

At. wt. $=$ Eq. wt. \times valency

$$
=9 \times 3=27
$$

80.(d) $\mathrm{SrF}_{2} \rightleftharpoons \mathrm{Sr}^{++}+2 \mathrm{~F}^{-}$
$\mathrm{NaF} \rightarrow \underset{\mathrm{Na}^{+}}{ }+\mathrm{F}^{-}$
$\begin{array}{ll}0.1 & 0.1\end{array}$
$\mathrm{Sr}^{++}=\mathrm{S}, \mathrm{F}^{-}=(2 \mathrm{~S}+0.1)$
$\mathrm{K}_{\text {sp }}=\mathrm{S} \times(2 \mathrm{~S}+0.1)^{2}$
$8 \times 10^{-10}=\mathrm{S} \times(0.1)^{2}[2 \mathrm{~S}+0.1 \approx 0.1]$
$8 \times 10^{-10}=\mathrm{S} \times 10^{-2}$
$\mathrm{S}=8 \times 10^{-8}$
81.(a) $\mathrm{pH}=10.65$
$\mathrm{pOH}=3.35$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$3.35=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{OH}^{-}=4.47 \times 10^{-4}$ moles
$\therefore\left[\mathrm{OH}^{-}\right]$in 250 ml
$\left[\mathrm{OH}^{-}\right]=\frac{4.47 \times 10^{-4} \times 250}{1000}=1.12 \times 10^{-4} \mathrm{moles} / \mathrm{L}$
No. of moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved

$$
=\frac{1.12 \times 10^{-4}}{2}=0.56 \times 10^{-4}
$$

82.(b) Here $y=\cos ^{-1} \frac{1-(\log x)^{2}}{1+(\log x)^{2}}$

$$
=2 \tan ^{-1}(\log x)
$$

$\therefore \quad \frac{d y}{d x}=2 \frac{d}{d x} \tan ^{-1}(\log x)$

$$
=2 \frac{d}{d(\log x)} \tan ^{-1}(\log x) \frac{d}{d x} \log x
$$

$$
=2 \frac{1}{1+(\log x)^{2}} \times \frac{1}{x}
$$

At $h=e, \frac{d y}{d x}=\frac{2}{1+1^{2}} \cdot \frac{1}{e}=\frac{1}{e}$
83.(b) $\int \sin ^{-1} x d x$
$=x \sin ^{-1} x-\int\left(\frac{d}{d x} \sin ^{-1} x \int d x\right) d x$
$=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} d x$
$=x \sin ^{-1} x+\frac{1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} d x$
$=x \sin ^{-1} x+\frac{1}{2} \cdot 2 \sqrt{1-x^{2}}+c$
$=x \sin ^{-1} x+\sqrt{1-x^{2}}+c$
84.(d) $\quad f(x)=\underset{\cos x}{\cos x}-\cos ^{2} x+\cos ^{3} x-\ldots \ldots \ldots+\infty$

$$
=\frac{\cos x}{1+\cos x}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-03-18 (SET-B) Hints \& Solution

$\int f(x) d x=\int \frac{\cos x d x}{1+\cos x}$
$\int \frac{1+\cos x-1}{1+\cos x} d x$
$=\int d x-\int \frac{1}{1+\cos x} d x$
$=x-\frac{1}{2} \int \frac{d x}{\cos ^{2} \frac{x}{2}}$
$=x-\frac{1}{2} \int \sec ^{2} \frac{x}{2} d x=x-\tan \frac{x}{2}+c$
85.(a) At certain time t,
$\mathrm{A}=$ area, $\mathrm{r}=$ radius, $\mathrm{p}=$ perimeter
$\mathrm{A}=\pi \mathrm{r}^{2}, \mathrm{p}=2 \pi \mathrm{r}$
$\frac{\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}$
$2 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{K}$
$\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{\mathrm{K}}{2 \pi \mathrm{r}}$

$$
\Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}} \propto \frac{1}{\mathrm{r}}
$$

86.(a) Let $\sqrt{5+12 \mathrm{i}}=x+$ iy then

$$
x^{2}=\frac{\sqrt{a^{2}+b^{2}}+\mathrm{a}}{2}, \quad y^{2}=\frac{\sqrt{a^{2}+b^{2}}-a}{2}
$$

$$
=\frac{\sqrt{5^{2}+12^{2}}+5}{2}=\frac{\sqrt{5^{2}+12^{2}}-5}{2}
$$

$$
=9 \quad=4
$$

$$
x= \pm 3 \quad y= \pm 2
$$

Since $b=12>0$, so square roots are $\pm(3+2 i)$
87.(c) a, b, c are in H.P.
$\Rightarrow \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{c}}$ are in A.P.
$\Rightarrow 1+\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}, 1+\frac{\mathrm{a}+\mathrm{c}}{\mathrm{b}}, 1+\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P.
88.(a) $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=\left|\begin{array}{lll}\alpha+\beta+\gamma & \beta & \gamma \\ \alpha+\beta+\gamma & \gamma & \alpha \\ \alpha+\beta+\gamma & \alpha & \beta\end{array}\right|$

$$
=\left|\begin{array}{lll}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta
\end{array}\right|=0
$$

$$
\text { as } \alpha+\beta+\gamma=0
$$

89.(c)

$$
\begin{aligned}
\mathrm{t}_{\mathrm{n}} & =\frac{(2 \mathrm{n}-1)}{\mathrm{n}!}=\frac{2}{(\mathrm{n}-2)!}+\frac{1}{(\mathrm{n}-1)!} \\
\mathrm{S}_{\infty} & =2 \sum \frac{1}{(\mathrm{n}-2)!}+\sum \frac{1}{(\mathrm{n}-1)!} \\
& =2 \mathrm{e}+\mathrm{e}=3 \mathrm{e}
\end{aligned}
$$

90.(c) Total $=\frac{6!}{2!}=360$

O's come together $=5!=120$
Required $=360-120=240$
$m+3 m=-\frac{2 h}{b^{2}}$
$m=-\frac{h}{2 b^{2}}$
$\mathrm{m} \times 3 \mathrm{~m}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$3 \mathrm{~m}^{2}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$3 \frac{b^{2}}{4 b^{4}}=\frac{a^{2}}{b^{2}}$
$\therefore \mathrm{h}=\frac{2}{\sqrt{3}} \mathrm{ab}$
92.(b) $3 x^{2}-3 y^{2}=25 \quad$ or, $x^{2}-y^{2}=\frac{25}{3}$

Conjugate hyperbola $f(1)$ is

$$
\begin{equation*}
\mathrm{x}^{2}-\mathrm{y}^{2}=-\frac{25}{3} \tag{2}
\end{equation*}
$$

As (1) and (2) are rectangular hyperbola
$\therefore \mathrm{e}_{1}=\mathrm{e}_{2}=\sqrt{2}$
$\therefore \mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=4$
93.(a) Equation of parallel plane
$x-2 y+2 z=K$
Also $\frac{|1-4+6-K|}{\sqrt{1+4+4}}=1$
or, $|3-K|=3$
or, $3-\mathrm{K}= \pm 3$
$\therefore \quad \mathrm{K}=0, \mathrm{~K}=6$
Required plane $x-2 y+2 z=6$
94.(c) $\tan ^{-1} x+\tan ^{-1} y=\pi-\tan ^{-1} z$
or, $\tan ^{-1} \frac{x+y}{1-x y}=\pi-\tan ^{-1} z$

$$
\begin{aligned}
& \frac{x+y}{1-x y}=\tan ^{-1}\left(\pi-\tan ^{-1} z\right) \\
& x+y=-z(1-x y)
\end{aligned}
$$

or, $x+y+z=x y z$

$$
\frac{1}{y z}+\frac{1}{z x}+\frac{1}{x y}=1
$$

95.(d)
$\tan A=\frac{\sin A}{\cos A}=\frac{\frac{a}{2 R}}{\frac{b^{2}+c^{2}-a^{2}}{2 b c}}=\frac{a b c}{\frac{R}{b^{2}+c^{2}-a^{2}}}$

$$
=\frac{4 \Delta}{\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}
$$

96.(c) Here coplanar $\Rightarrow\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$

Expanding $a b c+2=a+b+c$
97.d
98.a 99.b 100.b
...The End...

