PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints \& Solution

Section-1

1.(c)
$P=F v=m a v=\frac{m v^{2}}{t}=m\left(\frac{x}{t}\right)^{2} \times \frac{1}{t}$
or, $P=m \frac{x^{2}}{t^{3}}$
or, $\mathrm{x} \propto \mathrm{t}^{3 / 2}$
2.(c)

$\cos \alpha=\frac{R}{B}=\frac{B}{2 . B}=\cos 60^{\circ}$
$\alpha=60^{\circ}$
$\therefore \quad \theta=90^{\circ}+\alpha=150^{\circ}$
3.(d)

$d Q=d u+d w, d w=0$ so
or, $\mathrm{dQ}=\mathrm{du}$
$\mathrm{dQ}<0$ is du decreases i.e. temperature fall.
6.(c) $\%$ increase $=\gamma \Delta \theta \times 100 \%$
$\gamma>\beta>\alpha$ so
7.(c) $u=f+x$
$\mathrm{m}=\frac{\mathrm{v}}{\mathrm{u}}=\left(\frac{\mathrm{fu}}{\mathrm{u}-\mathrm{f}}\right) \times \frac{1}{\mathrm{u}}$

$$
=\frac{f}{u-f}=\frac{f}{f+x-f}=\frac{f}{x}
$$

8.(a)
9.(b)
$\mathrm{v}=\sqrt{\frac{\mathrm{E}}{\rho}}, \mathrm{E}=$ Elasticity $\rho=$ density
10.(c) For open

$$
\mathrm{f}=\frac{\mathrm{v}}{2 l}
$$

When dipped in water

$$
\begin{equation*}
\mathrm{f}^{\prime}=\frac{\mathrm{v}}{4 l / 2}=\frac{\mathrm{v}}{2 l}=\mathrm{f} \tag{c}
\end{equation*}
$$

$\mathrm{F}=\frac{1}{4 \pi \varepsilon} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}=\frac{1}{4 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}}} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}$
For brass $\varepsilon_{\mathrm{r}}=\infty$ so $\mathrm{F}=0$
$\mathrm{Q}=\mathrm{CV}=\varepsilon_{\mathrm{r}} \mathrm{C} \frac{\mathrm{V}}{8}$
or, $\varepsilon_{\mathrm{r}}=8$
13.(d)
$\frac{\mathrm{R}^{\prime}}{\mathrm{R}}=\left(\frac{l+2 l}{l}\right)^{2} \Rightarrow \mathrm{R}^{\prime}=9 \mathrm{R}$
14.(a) $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\frac{\mathrm{V}^{2}}{\mathrm{R}_{1}}}{\frac{\mathrm{~V}^{2}}{\mathrm{R}_{2}}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
15.(b) $\mathrm{H}=\mathrm{Becos} \delta$
or, $\mathrm{Be}=\frac{\mathrm{H}}{\cos 30^{\circ}}=\frac{2 \mathrm{H}}{\sqrt{3}}$
16.(a) $\mathrm{Bqv}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
or, $\mathrm{Bqr}=\mathrm{mr} \omega$
or, $\mathrm{Bq}=2 \pi \mathrm{fm} \Rightarrow \mathrm{f}=\frac{\mathrm{Bq}}{2 \pi \mathrm{~m}}$
17.(c) $\mathrm{V}_{\text {in }}=\mathrm{IR}_{\text {in }}$ or, $\mathrm{I}_{\mathrm{b}}=\frac{0.01}{1000}=10 \times 10^{-6} \mathrm{~A}$
$\beta=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}$
$I_{c}=50 \times 10 \times 10^{-6}=500 \mu \mathrm{~A}$
18.(a)

Increase in + ve charge \Rightarrow oxidation
In period, Iomization energy increases but for second Iomisation energy incase of oxygen electron is remove from half filled $2 \mathrm{p}^{3}$ orbital which is more stable so second iomization energy for oxygen $>$ Fluorine.
21.(b) Last electron of fluorine is $\mathrm{m} 2 \mathrm{p}_{\mathrm{y}}$ $\mathrm{n}=2 \quad l=1 \quad \mathrm{~m}=0$
23.(d)
24.(d)

25.(a) The blue colour of solution is due to ammoniated electron which absorb energy in the visible region of light thus import blue colour $\mathrm{Na}^{+}(\mathrm{x}+\mathrm{y}) \mathrm{NH}_{3} \rightarrow\left[\mathrm{Na}\left(\mathrm{NH}_{3}\right) \mathrm{x}\right]^{+}+\left[\mathrm{e}\left(\mathrm{NH}_{3}\right) \mathrm{y}\right]^{-}$
26.(b) In aqueous solution of Ca salt
Ca^{++}\& H^{+}
Since H^{+}has more tendency to gain electron if get reduced first.

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints \& Solution

27.(b) Higher boiling point of $\mathrm{H}_{2} \mathrm{O}$ is due to formation of H -bond.
28.(c) $10 \mathrm{HNO}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HIO}_{3}+4 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{NO}_{2}$

Conc.
29.(c)
$\frac{d y}{d z}=\frac{\frac{d e^{x}}{d x}}{\frac{d \sin ^{-1} x}{d x}}=\frac{e^{x}}{\frac{1}{\sqrt{1-x^{2}}}}$
30.(b) $\int_{8}^{10} f(x) d x=\int_{0}^{10} f(x) d x-\int_{0}^{8} f(x) d x$
31.(c) $\left|z_{1}\right|=\sqrt{3^{2}+4^{2}}=5$
$\left|z_{2}\right|=\sqrt{4^{2}+(-3)^{2}}=5$
$\therefore \quad\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|$
32.(d) $\lim _{x \rightarrow 0} \frac{5^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}$
$=\log _{\mathrm{e}} 5+\log _{\mathrm{e}} 3=\log _{\mathrm{e}}(5 \times 3)$
33.(c) Obvious
34.(a)
35.(c) Obvious
36.(b) Putling $x=\operatorname{asec} \theta \& y=b \tan \theta$
$\frac{\mathrm{a}^{2} \sec ^{2} \theta}{\mathrm{a}^{2}}-\frac{\mathrm{b}^{2} \tan ^{2} \theta}{\mathrm{~b}^{2}}=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$1=1$
37.(d) $\vec{a}+\vec{b}+\vec{c}=0$
$\vec{a}+\vec{i}-\vec{j}+\vec{j}+\vec{k}=0$
$\vec{a}=-\vec{i}-\vec{k}$
38.(a) $a x+b y=2 a b$
$\frac{x}{2 b}+\frac{y}{2 a}=1$
Area of $\Delta=\frac{1}{2} \cdot 2 \mathrm{a} \cdot 2 \mathrm{~b}=|2 \mathrm{ab}|$
39.(c) Putting $x=1 \& y=2$
$2^{2}=4.1 \quad$ i.e. $4=4$
(an the parabola)
40.(d) $\frac{1}{\sin \mathrm{~A}}=\frac{2 \mathrm{R}}{\mathrm{a}}=\frac{2}{\mathrm{a}} \frac{\mathrm{abc}}{4 \Delta}=\frac{\mathrm{bc}}{2 \Delta}$
41.(d) $\sin ^{2} 25+\sin ^{2}(90-25)$
$=\sin ^{2} 25+\cos ^{2} 25=1$
42.(b) Total number of ways $=4 \times 3 \times 3 \times 2$

$$
=72 \text { ways }
$$

43.(c) $\left(x-\frac{1}{x}\right)^{2 n}$

Total no. of terms $=2 n+1$
No. of terms independent of $x=1$
No. of terms dependent of $x=(2 n+1)-1=2 n$
44.(b) Centre $(0,0) \& r=5$
$5=\left|\frac{0+0+\mathrm{k}}{\sqrt{3^{2}+4^{2}}}\right|$
$\mathrm{k}=25$
45.(c) $\quad \mathrm{A}=\int_{0}^{\pi} \sin \mathrm{x}$

$$
\begin{aligned}
& =[-\cos x]_{0}^{\pi}=-[\cos \pi-\cos 0] \\
& =-[-1-1]=2 \text { sq. units }
\end{aligned}
$$

46.(b) $2 \cdot \frac{d y}{d x}=-2 x$ At $\mathrm{x}=1: \frac{\mathrm{dy}}{\mathrm{dx}}=-1$
47.(b) $\cos ^{-1} \sin \frac{\pi}{6}=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}$
48.(b) Direction cosines of the line PQ are:
$\frac{x_{2}-x_{1}}{r}, \frac{y_{2}-y_{1}}{r}, \frac{z_{2}-z_{1}}{r}$
$\frac{5-7}{3},-\frac{3+5}{3}, \frac{8-9}{3} \quad$ i.e. $-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}$
$\begin{array}{llllll}\text { 49.(a) } & 50 .(\mathrm{d}) & 51 .(\mathrm{b}) & 52 .(\mathrm{c}) & 53 .(\mathrm{a}) & 54 .(\mathrm{c}) \\ 55 .(\mathrm{d}) & 56 .(\mathrm{b}) & 57 .(\mathrm{b}) & 58 .(\mathrm{a}) & 59 .(\mathrm{b}) & 60 .(\mathrm{a})\end{array}$

Section - II

61.(b) Vel. of thief relative to police is

$$
\begin{aligned}
\mathrm{v}_{1}=155-45 & =110 \mathrm{~km} / \mathrm{hr} \\
& =30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Vel. of bullet relative to thief is

$$
\mathrm{v}_{2}=180-30=150 \mathrm{~m} / \mathrm{s}
$$

62.(a) $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
or, $\quad \mathrm{T}=\mathrm{mg}-\mathrm{ma}$
or, $\quad \mathrm{T}_{\max }=\mathrm{m}\left(\mathrm{g}-\mathrm{a}_{\min }\right)$
or, $\frac{3}{4} \mathrm{mg}=\mathrm{m}\left(\mathrm{g}-\mathrm{a}_{\min }\right)$
or, $\quad a_{\text {min }}=\frac{\mathrm{g}}{4}$
63.(c)

$h=\frac{L}{2}-\frac{L}{3}$
$=\frac{\mathrm{L}}{6}$
$\mathrm{I}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
$=\frac{1}{12} \mathrm{ML}^{2}+\mathrm{M}\left(\frac{\mathrm{L}}{6}\right)^{2}$
$=\frac{\mathrm{ML}^{2}}{12}+\frac{\mathrm{ML}^{2}}{36}$
$=\frac{\mathrm{ML}^{2}}{9}$
64.(d) $\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}}{\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}}=\frac{42^{2}-40^{2}}{21^{2}-20^{2}}=\frac{(42+40) \times 2}{(21+20) \times 1}$
$\therefore \quad \mathrm{t}_{2}=4 \times 10=40 \mathrm{hrs}$
65.(c) 40% of $\mathrm{mgh}=\mathrm{mLf}$
or, $\mathrm{h}=\frac{80 \times 4200}{0.4 \times 10}=84000 \mathrm{~m}=84 \mathrm{~km}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-03-18 Hints \& Solution
66.(c) $\mathrm{m}=\frac{\mathrm{I}_{1}}{0}=\frac{0}{\mathrm{I}_{2}}$
or, $0=\sqrt{\mathrm{I}_{1} \mathrm{I}_{2}}=\sqrt{8 \times 2}=4 \mathrm{~cm}$
67.(a)

$\frac{\mathrm{y}_{\mathrm{n}} \mathrm{d}}{\mathrm{D}}=\mathrm{n} \lambda$
or, $\frac{\mathrm{d}^{2}}{2 \mathrm{D}}=\mathrm{n} \lambda$
or, $n=\frac{\mathrm{d}^{2}}{2 \mathrm{D} \lambda}$
68.(a) For A
$f_{A}=f+3 \%$ of $f=1.03 f$
For B
$f_{B}=f-3 \%$ of $f=0.97 f$
Now
$f_{A}-f_{B}=6$
or, $\quad 1.03 \mathrm{f}-0.97 \mathrm{f}=6$
or, $f=\frac{6}{0.06}=100 \mathrm{~Hz}$
69.(a) $\mathrm{Q}=\mathrm{CV}=\mathrm{C}^{\prime} \mathrm{V}$
or, $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}\left(1-\frac{1}{\varepsilon_{r}}\right)}+1.6$
or, $\quad d=d-2\left(1-\frac{1}{\varepsilon_{\mathrm{r}}}\right)+1.6$
or, $\quad 2\left(1-\frac{1}{\varepsilon_{r}}\right)=1.6$
or, $1-\frac{1}{\varepsilon_{\mathrm{r}}}=0.8$
or, $\frac{1}{\varepsilon_{\mathrm{r}}}=0.2$
or, $\varepsilon_{\mathrm{r}}=5$
70.(d)
$\mathrm{R}=\frac{\rho l}{\mathrm{~A}}=\frac{\rho l^{2}}{\mathrm{~V}}=\frac{\rho l^{2}}{\mathrm{~m}} \times$ density
$\therefore \quad \mathrm{R}_{1}: \mathrm{R}_{2}: \mathrm{R}_{3}=\frac{l_{1}{ }^{2}}{\mathrm{~m}_{1}}: \frac{l_{2}{ }^{2}}{\mathrm{~m}_{2}}: \frac{l_{3}{ }^{2}}{\mathrm{~m}_{3}}$

$$
=\frac{25}{1}: \frac{9}{3}: \frac{1}{5}
$$

$$
=25: 3: \frac{1}{5}
$$

$$
=125: 15: 1
$$

71.(b) $\mathrm{Q}=\mathrm{I}^{2} \mathrm{RT}=\operatorname{msd} \theta$
or, $\frac{d \theta_{2}}{d \theta_{1}}=\frac{I_{2}{ }^{2}}{I_{1}{ }^{2}}$
or, $\mathrm{d} \theta_{2}=\left(\frac{2 \mathrm{I}}{\mathrm{I}}\right)^{2} \times 3=12^{\circ} \mathrm{C}$

$$
\begin{align*}
\mathrm{E} & =-\left(\frac{\phi_{2}-\phi_{1}}{\mathrm{t}}\right)=-\left(\frac{\mathrm{B}_{2} \mathrm{AN}-\mathrm{B}_{1} \mathrm{AN}}{\mathrm{t}}\right) \tag{a}\\
& =\frac{(0.05-0.1) 0.1 \times 0.05 \times 100}{0.05} \\
& =0.5 \mathrm{~V}
\end{align*}
$$

73.(b) For Balmer

$$
\begin{equation*}
\frac{1}{\lambda_{\mathrm{B}}}=\mathrm{R}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5 \mathrm{R}}{31} \tag{i}
\end{equation*}
$$

or, $\lambda_{B}=\frac{36}{5 R}$
For Lyman series

$$
\begin{align*}
& \frac{1}{\lambda_{\mathrm{L}}}=\mathrm{R}\left[\frac{1}{1}-\frac{1}{4}\right]=\frac{3 \mathrm{R}}{4} \\
& \lambda_{\mathrm{L}} \tag{ii}
\end{align*}=\frac{4}{3 \mathrm{R}} \ldots . . .(\mathrm{ii}) .
$$

For \mathbf{X}

$$
\begin{aligned}
\mathrm{A}_{\mathrm{x}}=\lambda \mathrm{N} & =\frac{0.693}{\mathrm{~T}_{1 / 2}}\left(\frac{1}{2}\right)^{t / \mathrm{T}} 1 / 2 \\
& =\frac{0.693}{1} \times\left(\frac{1}{2}\right)^{2 / 1}=\frac{0.693}{4} \mathrm{~N}_{0}
\end{aligned}
$$

For Y

$$
\left.\begin{array}{rl}
A_{Y} & =\lambda N
\end{array}=\frac{0.693}{T_{1 / 2}} \times\left(\frac{1}{2}\right)^{t / T_{1 / 2}} N_{0}\right) ~=\frac{0.693}{4} N_{0} .
$$

75.(b)

At anode	At cathode
$\mathrm{SO}_{4}^{-}-$ oxidize	
OH^{-}oxidize to give not	Due to high tendency of Cu^{++}to reduce than H^{+} O_{2}
$\mathrm{Cu}-\quad$ deposite at lathode	

$1000 \mathrm{ml} 1 \mathrm{~N} \mathrm{CuSO}_{4}$ liberate 127 g Iodine
$\mathrm{N}=\frac{\mathrm{W} \times 1000}{\mathrm{E} \times \mathrm{V}}$
$1=\frac{\mathrm{W} \times 1000}{127 \times 400}$
$\therefore \quad \mathrm{W}=50.8 \mathrm{gm}$
77.(b) $\mathrm{pH}=4$ thus $\mathrm{H}^{+}=10^{-4}$

Now, diluted so $\mathrm{H}^{+}=\frac{10^{-4}}{10^{3}}=10^{-7}$
$\mathrm{pH}=-\log \left(10^{-7}+10^{-7}\right)$
$=6.69 \Rightarrow$ less than 7
78.(c) $\quad \mathrm{Fe}($ no. of mole $)=\frac{558.5}{55.85}=10$ moles $=10 \times \mathrm{N}_{\mathrm{A}}$

No. of moles in 60 g carbon $=\frac{60}{12}=5$ moles $=5 \times \mathrm{N}_{\mathrm{A}}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints \& Solution
79.(b)

81.(c) $\mathrm{KBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{HBr}$

82.(a) $f\left(\frac{x}{y}\right)+f(x y)$
$=\cos (\log (x / y))+\cos (\log (x y))$
$=\cos (\log x-\log y)+\cos (\log x+\log y)$
$=2 \cos (\log x) \cdot \cos (\log y)$
$=2 \mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})$
From the given condition, we get $=0$
83.(c)

Area of sector $\mathrm{OAB}=\frac{1}{4} \cdot \pi \mathrm{ab}$
Area of $\triangle \mathrm{AOB}=\frac{1}{2}$ a.b
Required area $=\frac{\pi \mathrm{ab}}{4}-\frac{\mathrm{ab}}{4}=\frac{\mathrm{ab}}{4}(\pi-2)$
84.(b) $\sin ^{-1} \frac{4}{5}+\cos ^{-1} \frac{x}{5}=\frac{\pi}{2}$
$x=4\left[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]$
85.(c) $\quad \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{m}$
$1=f^{\prime}(0)=m$
$\mathrm{f}(0)=\mathrm{c}$
$1=\mathrm{c}$
$\mathrm{f}(\mathrm{x})=1 \mathrm{x}+1$
$\mathrm{f}(2)=2+1=3$
86.(a) $\quad \alpha=\omega$ and $\alpha^{2}=\omega$
$\alpha^{31}=\omega^{31}=\omega^{30} . \omega=\omega$
$\alpha^{62}=\omega^{62}=\omega^{60} \cdot \omega^{2}=\omega^{2}$
Roots are same, so the equation is $\mathrm{x}^{2}+\mathrm{x}+1=0$
87.(a) $\quad\left[e^{x} \cdot \frac{1}{x}\right]_{1}^{2} \quad\left[\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} \cdot f(x)+c\right]$
$=\left(\mathrm{e}^{2} \cdot \frac{1}{2}\right)-(\mathrm{e} .1)=\mathrm{e}\left(\frac{\mathrm{e}}{2}-1\right)$
88.(b) $\frac{\mathrm{dv}}{\mathrm{dt}}=10$ cubic inches $/ \mathrm{sec}$.
$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{4}{3} \pi \mathrm{r}^{3}\right)=10$
$\frac{4}{3} \pi .3 \mathrm{r}^{2} \cdot \frac{\mathrm{dr}}{\mathrm{dt}}=10$
$\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{10}{4 \pi .1}=\frac{5}{2 \pi} \mathrm{inch} / \mathrm{sec}$
89.(c)

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) & =|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}| \cos \theta \\
& =|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}| \sin \frac{\pi}{2} \\
& =|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}|
\end{aligned}
$$

90.(a) Parallel plane: $x+2 y+4 z=k$

Passes through (2, 3, 4)
$2+6+16=k \quad$ i.e. $k=24$
Required plane: $x+2 y+4 z=24$
91.(b)
$x^{2}=4 y$
$\frac{d y}{d x}=\frac{x}{2}$
At $x=a: \frac{d y}{d x}=\frac{a}{2}$
$\tan \theta=\frac{\mathrm{a}}{2}$

$$
\theta=\tan ^{-1}\left(\frac{\mathrm{a}}{2}\right)
$$

92.(a) $\frac{\sin (\mathrm{B}+\mathrm{C})}{\sin (\mathrm{A}+\mathrm{B})}=\frac{\sin (\mathrm{A}-\mathrm{B})}{\sin (\mathrm{B}-\mathrm{C})}$
$\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}=\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}$
93.(c) Total $={ }^{4} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{1}$
$=2^{4}-1=15$
$\left[-\frac{1}{\frac{(n+1)}{1}}-\frac{\left(\frac{1}{n+1}\right)^{2}}{2}-\frac{\left(\frac{1}{n+1}\right)^{3}}{3} \ldots . . \infty\right]$
$=-\log _{e}\left(1-\frac{1}{\mathrm{n}+1}\right)=-\log \left(\frac{\mathrm{n}}{\mathrm{n}+1}\right)$
$=\log \left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)=\log \left(1+\frac{1}{\mathrm{n}}\right)$
$=\frac{1}{\mathrm{n}}-\frac{1}{2 \mathrm{n}^{2}}+\frac{1}{3 \mathrm{n}^{3}}-$ \qquad
95.(b) Coincident lines: $\mathrm{h}^{2}=\mathrm{ab}$

$$
\begin{gathered}
(-2 \mathrm{k})^{2}=3.5 \\
\mathrm{k}= \pm \frac{\sqrt{15}}{2}
\end{gathered}
$$

96.(c) $a=b^{y / x}, c=b^{y / z}$

We have: $\mathrm{b}^{2}=\mathrm{ac}$

$$
\begin{aligned}
& b^{2}=b^{y / x} \cdot b^{y / z} \\
& 2=\frac{y}{x}+\frac{y}{z}
\end{aligned}
$$

$$
y=\frac{2 x y}{x+z}(\text { H.P. })
$$

$$
\text { 97.(a) } \quad 98 .(\mathrm{b}) \quad 99 .(\mathrm{b}) \quad 100 .(\mathrm{b})
$$

