	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints & Solution						
		1	V^2				
1.(c)	$P = F_{V} = mav = \frac{mv^{2}}{t} = m\left(\frac{x}{t}\right)^{2} \times \frac{1}{t}$	14.(a)	$\frac{H_1}{H_2} = \frac{\overline{R_1}}{\underline{V}^2} = \frac{R_2}{R_1}$				
	or, $P = m \frac{X^2}{t^3}$	15 (b)	$H = \text{Becos}\delta$				
2.(c)	or, $\mathbf{x} \propto t^{3/2}$	13.(0)	or, Be = $\frac{H}{\cos 30^\circ} = \frac{2H}{\sqrt{3}}$				
	$\overrightarrow{R} = \frac{B}{2}$	16.(a)	$Bqv = \frac{mv^2}{r}$				
			or, $Bqr = mr\omega$ or, $Bq = 2\pi fm \Rightarrow f = \frac{Bq}{2\pi m}$				
	$\cos\alpha = \frac{R}{B} = \frac{B}{2.B} = \cos 60^{\circ}$	17.(c)	$V_{in} = IR_{in}$				
	$\alpha = 60^{\circ}$ $\therefore \theta = 90^{\circ} + \alpha = 150^{\circ}$		or, $I_b = \frac{0.01}{1000} = 10 \times 10^{-6} \text{ A}$				
3.(d)	R		$\beta = \frac{1}{I_b}$				
	60°	18.(a)	$I_c = 50 \times 10 \times 10^{\circ} = 500 \ \mu A$				
	PE = mgn = $mgl^{l} cos60^{\circ}$		$S_2O_3^{} \longrightarrow S_4O_6^{}$				
	mg/		\downarrow \downarrow \downarrow $+2$ 5				
	$=\frac{1}{4}$		Increase in +ve charge \Rightarrow oxidation				
4.(d)	$\Delta E = T\Delta A = T \{8\pi (2r)^2 - 8\pi r^2\}$ $= 24\pi r^2 T$	19.(b) 20 (c)	In period Iomization energy increases but for				
5.(a)	dQ = du + dw, dw = 0 so or, $dQ = du$ dQ < 0 is du decreases i.e. temperature fall	()	second Iomisation energy incase of oxygen electron is remove from half filled 2p ³ orbital				
6.(c)	% increase = $\gamma \Delta \theta \times 100\%$		which is more stable so second iomization energy for oxygen > Fluorine.				
7.(c)	$\gamma > \beta > \alpha$ so $u = f + x$	21.(b)	Last electron of fluorine is m $2p_y$ n = 2 $l = 1$ m = 0				
	$m = \frac{v}{u} = \left(\frac{fu}{u-f}\right) \times \frac{1}{u}$	22.(d)	$HPO_4^{}$				
	$=\frac{\mathbf{f}}{\mathbf{u}+\mathbf{f}}=\frac{\mathbf{f}}{\mathbf{f}+\mathbf{x}-\mathbf{f}}=\frac{\mathbf{f}}{\mathbf{x}}$		$HPO_4 \longrightarrow H^+ PO_4$ must be acid conjugate base				
8.(a)		23.(d)					
9.(b)	$v = \sqrt{\frac{E}{\rho}}, E = Elasticity \rho = density$		$\dot{C}H_2 - \dot{C}H_2 - OH$				
10.(c)	For open						
	$f = \frac{1}{2l}$	24 (4)	2-phenyl ethanol				
	when dipped in water $f' = \frac{V}{V} = \frac{V}{V} = f$	24.(d)	+ +				
	$1 - \frac{4l}{2} - \frac{2l}{2l} - 1$ 1 0,02 1 0,02	($CH_2 - CH \stackrel{\prime}{=} CH_2 + H \longrightarrow CH_3 - CH - CH_3$				
11.(c)	$F = \frac{1}{4\pi\varepsilon} \frac{1}{r^2} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{1}{r^2}$	25.(a)	The blue colour of solution is due to				
12 (c)	For brass $\varepsilon_r = \infty$ so $F = 0$ $O = CV = \varepsilon C \frac{V}{2}$		ammoniated electron which absorb energy in the visible region of light thus import blue colour				
(•)	$\epsilon_r = 8$	26 (b)	$Na^+(x+y) NH_3 \rightarrow [Na(NH_3)x]^+ + [e(NH_3)y]^-$ In aqueous solution of Ca salt				
13.(d)	$\frac{\mathrm{R'}}{\mathrm{R}} = \left(\frac{l+2l}{l}\right)^2 \Rightarrow \mathrm{R'} = 9\mathrm{R}$	20.(0)	$Ca^{++} \& H^+$ Since H^+ has more tendency to gain electron if				
		1	get reduced first.				

-	2079-03-	18 Hints	s & Solution		
27.(b)	Higher boiling point of H ₂ O is due to formation of H-bond.	45.(c)	$A = \int_{-\infty}^{\pi} sinx$		
28.(c)	$10HNO_3 + I_2 \rightarrow 2HIO_3 + 4H_2O + 10NO_2$		$= [-\cos x] = -[\cos \pi - \cos 0]$		
	Conc. de ^x		$= [-\cos x]_0^0 = -[\cos x - \cos y]_0^0$ = $-[-1, -1] = 2$ so units		
29 (c)	$\frac{dy}{dx} = \frac{e^x}{e^x}$	46 (b)	$2\frac{dy}{dt} = -2x \qquad \qquad \Delta t x = 1 \cdot \frac{dy}{dt} = -1$		
29.(0)	$dz = \frac{dsin^{-1}x}{dx} = \frac{1}{\sqrt{1-x^2}}$	10.(0)	$z dx = 1 \pi$		
	$\int_{10}^{10} x = \int_{10}^{10} x = \int_{10}^{8} x = 1$	47.(b)	$\cos^{-1}\sin\frac{\pi}{6} = \cos^{-1}\frac{1}{2} = \frac{\pi}{3}$		
30.(b)	$\int_{8} f(x) dx = \int_{0}^{1} f(x) dx - \int_{0}^{1} f(x) dx$ = 17 - 12 = 5	48.(b)	Direction cosines of the line PQ are: $x_2 - x_1 \ y_2 - y_1 \ z_2 - z_1$		
31.(c)	$ z_1 = \sqrt{3^2 + 4^2} = 5$				
	$ z_2 = \sqrt{4^2 + (-3)^2} = 5$		$\frac{5-7}{3}, -\frac{3+5}{3}, \frac{8-9}{3}$ i.e. $-\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}$		
	$\therefore z_1 = z_2 $ lim $5^x - 1$ lim $3^x - 1$	49.(a)	50.(d) 51.(b) 52.(c) 53.(a) 54.(c)		
32.(d)	$x \to 0 \frac{y}{x} + x \to 0 \frac{y}{x}$	55.(d)	56.(b) 57.(b) 58.(a) 59.(b) 60.(a)		
22(a)	$= \log_{e} 5 + \log_{e} 3 = \log_{e} (5 \times 3)$		Section – II		
33.(c) 34.(a)	Obvious	61.(b)	Vel. of thief relative to police is y = 155, $45 = 110$ km/br		
35.(c)	Obvious		$v_1 = 155 - 45 = 110 \text{ km/nr}$ = 30 m/s		
36.(b)	Putling x = asec θ & y = btan θ a ² sec ² θ b ² tan ² θ		Vel. of bullet relative to thief is		
	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$	(2)	$v_2 = 180 - 30 = 150 \text{ m/s}$		
	$\sec^2\theta - \tan^2\theta = 1$	62.(a)	mg - 1 = ma or $T = mg - ma$		
			or, $T_{max} = m(g - a_{min})$		
37.(d)	a + b + c = 0		or, $\frac{3}{4}$ mg = m(g - a _{min})		
	a + i - j + j + k = 0		g		
38 (a)	a = -i - k ax + by = 2ab		or, $a_{\min} = \frac{2}{4}$		
38.(a)	$\frac{X}{X} + \frac{y}{Y} = 1$	63.(c)			
	$2b + \overline{2a} = 1$		CG		
	Area of $\Delta = \frac{1}{2}$. 2a.2b = $ 2ab $				
39.(c)	Putting $x = 1 & y = 2$		$h - \frac{L}{L}$		
	$2^{2} = 4.1$ 1.e. $4 = 4$ (an the parabola)		$\frac{1}{2}$ $\frac{1}{3}$		
40 (d)	$\frac{1}{1} = \frac{2R}{2R} = \frac{2}{2} \frac{abc}{abc} = \frac{bc}{abc}$		$=\frac{1}{6}$		
41 (d)	$\sin A = a = 4\Delta = 2\Delta$ $\sin^2 25 + \sin^2 (90 - 25)$		$I = I_{cm} + Mh^2$		
41.(u)	$\sin 23 + \sin (30 - 23) = \sin^2 25 + \cos^2 25 = 1$		$=\frac{1}{12} \mathrm{ML}^2 + \mathrm{M}\left(\frac{\mathrm{L}}{6}\right)$		
42.(b)	Total number of ways = $4 \times 3 \times 3 \times 2$ = 72 ways		$=\frac{ML^2}{12}+\frac{ML^2}{26}$		
43 (c)	$\left(x-\frac{1}{2}\right)^{2n}$		ML^2		
()	Total no. of terms = $2n + 1$		$=\frac{9}{9}$		
	No. of terms independent of $x = 1$	64.(d)	$\frac{t_2}{t_1} = \frac{x_2^2 - x_1^2}{x_2^2 - x_2^2} = \frac{42^2 - 40^2}{21^2 - 20^2} = \frac{(42 + 40) \times 2}{(21 + 20) \times 1}$		
11 (b)	No. of terms dependent of $x = (2n + 1) - 1 = 2n$: $t_2 = 4 \times 10 = 40$ hrs		
++.(U)	$\left \frac{0}{0} + 0 + k \right $	65.(c)	40% of mgh = mLf		
	$S = \left \frac{1}{\sqrt{3^2 + 4^2}} \right $		or, $h = \frac{80 \times 4200}{0.4 \times 10} = 84000 \text{ m} = 84 \text{ km}$		
	k = 25		0.1 ** 10		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

FEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints & Solution						
66.(c)	$m = \frac{I_1}{0} = \frac{0}{I_2}$	72.(a)	$\mathbf{E} = -\left(\frac{\phi_2 - \phi_1}{t}\right) = -\left(\frac{\mathbf{B}_{2^2}}{t}\right)$	$\frac{AN - B_1AN}{t}$)		
67.(a)	or, $0 = \sqrt{I_1 I_2} = \sqrt{8 \times 2} = 4 \text{ cm}$	73 (b)	$=\frac{(0.05-0.1)\ 0.1\times 0.05}{0.05}$ = 0.5 V For Balmer	<u>05 × 100</u>		
	$d\left\{\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array}\right\} y_n = \frac{d}{2}$	75.(0)	$\frac{1}{\lambda_{\rm B}} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$	$=\frac{5R}{31}$		
	$\frac{y_n d}{D} = n\lambda$		or, $\lambda_{\rm B} = \frac{1}{5R}$ (1) For Lyman series			
	or, $\frac{d^2}{2D} = n\lambda$		$\frac{1}{\lambda_{\rm L}} = R \left[\frac{1}{1} - \frac{1}{4} \right] = \frac{1}{2}$	<u>3R</u> 4		
68 (a)	or, $n = \frac{u}{2D\lambda}$		$\lambda_{\rm L} = \frac{4}{3\rm R} \dots (ii)$			
00.(<i>a</i>)	$f_A = f + 3\%$ of $f = 1.03f$		$\frac{\lambda_{\rm L}}{\lambda_{\rm B}} = \frac{4}{3\rm R} \times \frac{3\rm R}{3\rm G}$			
	$f_B = f - 3\%$ of $f = 0.97f$ Now	74 (c)	$\therefore \lambda_{\rm L} = \frac{3}{27} \times 6563 = 1$	215 Å		
	$f_A - f_B = 6$ or, $1.03f - 0.97f = 6$,(-)	$A_x = \lambda N = \frac{0.693}{T_{1/2}} \left($	$\left(\frac{1}{2}\right)^{t/T_{1/2}} N_0$		
(0, (a))	or, $f = \frac{6}{0.06} = 100 \text{ Hz}$		$=\frac{0.693}{1}\times$	$\left(\frac{1}{2}\right)^{2/1} = \frac{0.693}{4} N_0$		
09.(a)	$\begin{array}{c} Q - CV - CV \\ \text{or,} \frac{\varepsilon_0 A}{d} = \frac{\varepsilon_0 A}{\sqrt{1}} + 1.6 \end{array}$		For Y 0.693			
	$d = t\left(1 - \frac{1}{\varepsilon_r}\right)$ or $d = d - 2\left(1 - \frac{1}{\varepsilon_r}\right) + 1.6$		$A_{\rm Y} = \lambda N = \frac{1}{T_{1/2}} \times \frac{0.693}{T_{1/2}} N$	$\left(\frac{1}{2}\right)^{1/2} N_0$		
	or, $2\left(1-\frac{1}{\varepsilon_r}\right) = 1.6$		$\therefore \frac{A_X}{A_Y} = \frac{0.693 N_0}{4} \cdot \frac{0.693 N_0}{4}$	$\frac{693}{4}$ N ₀ = 1:1		
	or, $1 - \frac{1}{2} = 0.8$	75.(b)	At anode	At cathode		
	or, $\frac{1}{\epsilon_r} = 0.2$		$SO_4^- \rightarrow does not$ oxidize	Due to high tendency of Cu^{++} to reduce		
	or, $\varepsilon_r = 5$ $\rho l \rho l^2 \rho l^2$		OH oxidize to give O_2	than H Cu – deposite at cathode		
/0.(d)	$\mathbf{R} = \frac{1}{\mathbf{A}} = \frac{1}{\mathbf{V}} = \frac{1}{\mathbf{m}} \times \text{density}$	76.(c)	1000 ml 1N CuSO ₄ libe W \times 1000	erate 127g Iodine		
	$K_1 \cdot K_2 \cdot K_3 = \frac{m_1 \cdot m_2 \cdot m_3}{m_1 \cdot m_2 \cdot m_3}$ = $\frac{25}{9} \cdot \frac{9}{1} \cdot \frac{1}{1}$		$N = \frac{W \times 1000}{E \times V}$			
	$1 \cdot 3 \cdot 5$ = 25 : 3 : $\frac{1}{2}$	77 (1)	$\therefore W = 50.8 \text{ gm}$			
71 (h)	= 125 : 15 : 1	//.(b)	pH = 4 thus $H = 10Now, diluted so H^+ = \frac{10}{1}$	$\frac{0^{-4}}{0^3} = 10^{-7}$		
/1.(0)	or, $\frac{d\theta_2}{d\theta_1} = \frac{I_2^2}{I_1^2}$		$pH = -log(10^{-7} + 10^{-7})^{T}$ = 6.69 \Rightarrow less than 7	7		
	or, $d\theta_2 = \left(\frac{2I}{I}\right)^2 \times 3 = 12^{\circ}C$	78.(c)	Fe (no. of mole) = $\frac{558.3}{55.83}$	$\frac{5}{5} = 10 \text{ moles} = 10 \times N_A$		
			No. of moles in 60g carbo	$n = \frac{60}{12} = 5 \text{ moles} = 5 \times N_A$		

DEA Association But Itd Thenetheli Vethmander T. 1 1015700 1055105

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-03-18 Hints & Solution

79.(b) $CH_3 - CH_3 \xrightarrow{Cl_2} CH_3CH_2CI \xrightarrow{Alc.} CH_2 = CH_2 \xrightarrow{P_3/CC_4} HCHO$ (A) = Ethane Formal dehyde 80.(c) $Zn \xrightarrow{\text{dil.}}_{\text{HNO}_{3}} \xrightarrow{Zn(NO_{3})_{2}}_{\substack{\text{Colourless}}} \xrightarrow{\text{aq}}_{\text{NaOH}} \xrightarrow{Zn(OH)_{2}}_{\substack{\text{White}\\\text{ppt}}} \xrightarrow{\text{excess}}_{\substack{\text{NaOH}}} \xrightarrow{\text{Na}_{2}ZnO_{2}} \xrightarrow{\text{H}_{2}S}_{\substack{\text{White}\\\text{White ppt.}}} ZnS$ 81.(c) $\text{KBr} + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{HBr}$ -1 $HBr + O \longrightarrow H_2O + Br_2$ Oxidises to Br₂ $f\left(\frac{x}{y}\right) + f(xy)$ 82.(a) $= \cos(\log(x/y)) + \cos(\log(xy))$ = $\cos(\log x - \log y) + \cos(\log x + \log y)$ $= 2\cos(\log x).\cos(\log y)$ = 2 f(x).f(y)From the given condition, we get = 083.(c) O A X Area of sector OAB = $\frac{1}{4}$. πab Area of $\triangle AOB = \frac{1}{2} a.b$ Required area = $\frac{\pi ab}{4} - \frac{ab}{4} = \frac{ab}{4}(\pi - 2)$ 84.(b) $\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{x}{5} = \frac{\pi}{2}$ $\mathbf{x} = 4 \left[\because \sin^{-1}\mathbf{x} + \cos^{-1}\mathbf{x} = \frac{\pi}{2} \right]$ 85.(c) f'(x) = m1 = f'(0) = mf(0) = c1 = cf(x) = 1x + 1f(2) = 2 + 1 = 386.(a) $\alpha = \omega \text{ and } \alpha^2 = \omega$ $\alpha^{31} = \omega^{31} = \omega^{30} \cdot \omega = \omega$ $\alpha^{62} = \omega^{60} \cdot \omega^2 = \omega^2$ Roots are same, so the equation is $x^2 + x + 1 = 0$ 87.(a) $\left[e^{x} \cdot \frac{1}{x} \right]_{1}^{2} \qquad \left[\int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} \cdot f(x) + c \right]$ $= \left(e^2 \cdot \frac{1}{2}\right) - (e \cdot 1) = e\left(\frac{e}{2} - 1\right)$ 88.(b) $\frac{dv}{dt} = 10$ cubic inches/sec. ...The End...

$$\begin{aligned} \frac{d}{dt} \left(\frac{4}{3}\pi r^{3}\right) &= 10 \\ \frac{4}{3}\pi .3r^{2} \cdot \frac{dr}{dt} &= 10 \\ \frac{dr}{dt} &= \frac{10}{4\pi .1} &= \frac{5}{2\pi} \operatorname{inch/sec} \end{aligned}$$
89.(c) $\vec{a} . (\vec{b} \times \vec{c}) &= |\vec{a}| . |\vec{b} \times \vec{c}| \cos\theta \\ &= |\vec{a}| |\vec{b}| |\vec{c}| \sin\frac{\pi}{2} \end{aligned}$

$$= |\vec{a}| |\vec{b}| |\vec{c}| \sin\frac{\pi}{2} \\ &= |\vec{a}| |\vec{b}| |\vec{c}| \\ 90.(a) \quad \text{Parallel plane: } x + 2y + 4z = k \\ \text{Passes through } (2, 3, 4) \\ 2 + 6 + 16 = k \qquad \text{i.e. } k = 24 \\ \text{Required plane: } x + 2y + 4z = 24 \end{aligned}$$
91.(b) $x^{2} = 4y \\ \frac{dy}{dx} = \frac{x}{2} \\ &\alpha t x = a: \frac{dy}{dx} = \frac{a}{2} \\ &\theta = \tan^{-1}\left(\frac{a}{2}\right) \end{aligned}$
92.(a) $\frac{\sin(B + C)}{\sin(A + B)} = \frac{\sin(A - B)}{\sin(B - C)} \\ \sin^{2}B - \sin^{2}C = \sin^{2}A - \sin^{2}B \\ 93.(c) \quad \text{Total} = ^{4}C_{4} + ^{4}C_{3} + ^{4}C_{2} + ^{4}C_{1} \\ &= 2^{4} - 1 = 15 \end{aligned}$
94.(b) $\left[-\frac{1}{-(\frac{n+1}{1})} - \frac{\left(\frac{1}{n+1}\right)^{2}}{2} - \frac{\left(\frac{1}{n+1}\right)^{3}}{3} \dots \infty \right] \end{aligned}$

$$= -\log_{e}\left(1 - \frac{1}{n+1}\right) = -\log\left(\frac{n}{n+1}\right) \\ &= \log\left(\frac{n+1}{n}\right) = \log\left(1 + \frac{1}{n}\right) \\ &= \log\left(\frac{n+1}{n}\right) = \log\left(1 + \frac{1}{n}\right) \\ &= \frac{1}{n} - \frac{1}{2n^{2}} + \frac{1}{3n^{3}} - \dots \infty \end{aligned}$$
95.(b) Coincident lines: h^{2} = ab \\ (-2k)^{2} = 3.5 \\ k = \pm \frac{\sqrt{15}}{2} \end{aligned}
96.(c) $a = b^{y/x}, c = b^{y/z} \\ We have: b^{2} = ac \\ b^{2} = b^{y/x} .b^{y/z} \\ &= 2 = \frac{y}{x} + \frac{y}{z} \\ y = \frac{2xy}{x+z} (H.P.) \end{aligned}$
97.(a) 98.(b) 99.(b) 100.(b)