PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-06-23 Hints \& Solution

1. (b) | $\rho=\frac{\mathrm{m}}{\mathrm{V}}$ | |
| ---: | :--- |
| or, $\frac{\Delta \rho}{\rho}$ | $= \pm\left(\frac{\Delta \mathrm{m}}{\mathrm{m}}+\frac{\Delta \mathrm{V}}{\mathrm{V}}\right) \times 100 \%$ |
| | $= \pm\left(\frac{0.01}{20}+\frac{0.1}{5}\right) \times 100 \%= \pm 2 \%$ |

2.(b) When angle between $\overrightarrow{\mathrm{a}}$ \& instantaneous velocity is not same so angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{v}} \neq 0^{\circ}$ due to which path is parabola.
3.(c) $W-F_{f}=m a$
or, $\quad \mathrm{F}_{\mathrm{f}}=\mathrm{W}-\frac{\mathrm{mg}}{4}=\mathrm{W}-\frac{\mathrm{W}}{4}=\frac{3 \mathrm{~W}}{4}$
4.(d)
5.(b) \quad For $1^{\text {st }} \mathrm{PV}=\mathrm{NKT}$
or, $\quad \mathrm{N}_{1}=\frac{\mathrm{PV}}{\mathrm{KT}}$
For $2^{\text {nd }} \mathrm{P}^{\prime} \mathrm{V}^{\prime}=\mathrm{N}_{2} \mathrm{KT}_{2}$
or, $\quad N_{2}=\frac{2 \mathrm{P}}{\mathrm{K} \times 2 \mathrm{~T}} \frac{\mathrm{~V}}{4}=\frac{\mathrm{PV}}{4 \mathrm{KT}}$
Now $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\frac{\mathrm{PV}}{\mathrm{KT}}}{\frac{\mathrm{PV}}{4 \mathrm{KT}}}=4: 1$
6.(c) If temp. of surrounding is more than temp. of body then rate of energy absorbed is more than rate of energy radiated.
7.(a) Frequency remain same while moving from one medium to another medium.
8.(d) First overtone is $2^{\text {nd }}$ harmonic

So, $\lambda=l$
9.(d) When $+3 \mu \mathrm{c}$ is added on $+3 \mu \mathrm{c}$ and $-3 \mu \mathrm{c}$ then net charge on $2^{\text {nd }}$ ball will be zero due to which force become zero.
10.(d) $C=\frac{\varepsilon_{\mathrm{r}} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$, capacity depends on area, nature of matter in between plates, distance between plates.
11.(c) Current through bulb $1 \& 4$ is equal so the brightness of them will be equal.
12.(a) In series
$\mathrm{P}_{\mathrm{eq}}=\frac{\mathrm{P}}{\mathrm{n}}=\frac{40}{2}=20 \mathrm{~W}$
13.(c) $\quad V=I R$
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{200}{50}=4 \mathrm{~A}$
$\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}=\frac{1}{2} \times 5 \times 10^{-3} \times 4^{2}=0.04 \mathrm{~J}=40 \mathrm{~mJ}$
14.(b) $4=f+x, v=f+y$

Now $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}}$
or, $\quad \frac{1}{f}=\frac{1}{f+x}+\frac{1}{f+y}$
or, $\quad \frac{1}{\mathrm{f}}=\frac{\mathrm{f}+\mathrm{y}+\mathrm{f}+\mathrm{x}}{(\mathrm{f}+\mathrm{x})(\mathrm{f}+\mathrm{y})}$
or, $f^{2}+f x+f y+x y=2 f^{2}+f x+f y$
or, $f^{2}=x y$

$=\frac{1}{\sqrt{2}} \times \frac{2}{1}=\sqrt{2}$
16.(d) $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{nh}} \times \frac{1}{2 \pi \mathrm{r}}$

$$
\begin{equation*}
=\frac{2 \pi(0.53 \times 4) \times 10^{-10}}{2}=6.6 \AA \tag{b}
\end{equation*}
$$

$\beta=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{b}}}=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{e}}-\Delta \mathrm{I}_{\mathrm{c}}}$
or, $\quad 100\left(\Delta \mathrm{I}_{\mathrm{e}}-1\right)=1$
or, $\quad \Delta \mathrm{I}_{\mathrm{e}}=1+\frac{1}{100}=1.01 \mathrm{~mA}$
18.(d) Atomic number of Na is 11 so Na^{+}contains 10 electrons, 11 protons and 12 neutrons.
19.(b) Zn, Cd and Hg have completely filled d-orbitals so they do not show transition behavior as well as variable valencies.
20.(d) $\quad \mathrm{S}^{2-}$ divalent
$\therefore \quad$ Valency of metal $=3$
Hence, formula of metal chloride $=\mathrm{MCl}_{3}$
21.(b) Since, I^{-}donate electron pair to I_{2}
22.(d) Pauli's exclusion principle $=$ in a given atom no. two atoms can have the same value of all the quantum numbers.
Hund's rule \rightarrow When orbitals of same energy are available the electrons tend to occupy separate orbitals with same spin rather than getting paired and pairing occurs only with opposite spin.
Aufbau principle states that orbitals having low energy being filled first.
Uncertainty principle: It is impossible to measure both position and momentum of electron simultaneously with absolute precision $\Delta \mathrm{x} \times \Delta \mathrm{p} \geq \mathrm{h} / 4 \pi$
23.(d) Due to the presence of dissolved hardness-producing salts, the boiling point of water is elevated. Elevation in boiling point is one of the most important colligative property. All the other options are correct.
24. (d) $\mathrm{N}_{2} \mathrm{O}$ is used in surgery. It is also known as laughing gas.
25.(b) Bronsted -lowry concept.

According to this concept, acid is proton donor and base is proton acceptor.
In given equation HCl donates proton and $\mathrm{H}_{2} \mathrm{O}$ accepts proton, so $\mathrm{H}_{2} \mathrm{O}$ is base and HCl is acid.
30.(a)
29.(c) Total no. of elements $=5$, no. of subsets having 3 elements $=c(5,3)=10$
It contains $>\mathrm{CHOH}$ group
These are keto and enol form of esters so known as tautomers.
$\sec ^{2} \theta=\frac{4}{3} \quad$ i.e. $\cos ^{2} \theta=\frac{3}{4} \quad$ i .e. $\cos ^{2} \theta=\left(\frac{\sqrt{2}}{2}\right)^{2}$
i.e. $\quad \cos ^{2} \theta=\cos ^{2} \frac{\pi}{6} \quad \therefore \theta=\mathrm{n} \pi \pm \frac{\pi}{6}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-06-23 Hints \& Solution

31.(b) $\quad a \sin \mathrm{~A}=\mathrm{b} \sin \mathrm{B}$
i.e. $\quad a \cdot \frac{a}{2 R}=b \cdot \frac{b}{2 R}$
i.e. $a^{2}=b^{2}$
i.e. $\quad a=b$
$\therefore \quad \Delta$ is isosceles
32.(b) $\frac{|\vec{a} \times \vec{b}|}{\vec{a} \cdot \vec{b}}=\frac{3}{\sqrt{3}}$
$\frac{\mathrm{ab} \sin \theta}{\mathrm{ab} \cos \theta}=\sqrt{3} \tan \theta=\sqrt{3}$
i.e. $\theta=60^{\circ}$
33.(b) Logarithm is defined for positive values only so option 'b'
34.(c) Product of roots $=1$
i.e. $\frac{-5}{\mathrm{~K}-2}=1$
i.e. $K-2=-5$
i.e. $K=-3$
35.(a) By definition the determinant of a matrix and its transpose are equal, so 'a'
36.(b) For no solution, $\mathrm{D}=0$
$\therefore \quad\left|\begin{array}{cc}\lambda & 3 \\ 1 & 2\end{array}\right|=0$
i.e. $2 \lambda-3=0$
i.e. $\lambda=\frac{3}{2}$
37. (d) The required line is $3(x-1)+5(y-2)=0$
i.e. $3 x+5 y-13=0$
38. (c) Given equations are $5 x+12 y+8=0,10 x+24 y-3=0$
i.e. $10 x+24 y+16=0,10 x+24 y-3=0$
$\therefore \quad$ Distance $= \pm \frac{16-(-3)}{\sqrt{10^{2}+24^{2}}}=\frac{19}{26}$ units
39. (b) Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{\sin ^{2} \theta+\cos ^{2} \theta+8}$

$$
=\sqrt{9}=3
$$

40. (d) Here, $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, which is an ellipse
41. (b) Given $x^{2}-4 y^{2}=1$
i.e. $\frac{x^{2}}{1}-\frac{y^{2}}{\frac{1}{4}}=1$

So, $\mathrm{e}=\sqrt{1+\frac{1}{4}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$
42. (c) The equation is true only for $x=0, y=0$ So it represents z -axis
43. (a) $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\sin \mathrm{x}}-1}{\mathrm{x}}=\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\sin x}-1}{\sin \mathrm{x}} \frac{\sin \mathrm{x}}{\mathrm{x}}=1.1=1$
44. (c) For point of discontinuity, $x-3=0$
i.e. $\quad x=3$
45. (b) By formula, option 'b' is correct.
46. (c) $2 \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 \mathrm{x}$
i.e. $\frac{d y}{d x}=-1$
i.e. $\tan \theta=-1 \quad \theta=135^{\circ}$
47. (b) \quad Put $t=\sqrt{x}$
i.e. $\quad d t=\frac{1}{2} \sqrt{x} d x$.

So, $\quad \frac{1}{2} \int \sec ^{2} t d t=\tan t+c=\tan \sqrt{x}+c$
48. (b) Rea. area $\int_{0}^{\pi} \sin x d x=\int_{0}^{\pi} \sin x d x$

			$\begin{aligned} & =[-\cos x]_{0}^{\pi} \\ & =(1+1)=2 \text { sq units } \end{aligned}$		
49.b	50.b	51.b	52.a	53.b	54.a
55.c	56.a	57.a	58.c	59.d	60.b
Section - II					
61. (d)	$\mathrm{h}=\frac{1}{2} \mathrm{gT}^{2}$	$\mathrm{T}=$	$\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$		
	$\text { After } \frac{T}{2},$	$\frac{1}{2} \mathrm{~g}$			

Height from ground
$\mathrm{h}^{\prime}=\mathrm{h}-\frac{\mathrm{h}}{4}=\frac{3 \mathrm{~h}}{4}$
62.(c) KE of ball $=$ work done against upthrust
or, $\quad \frac{1}{2} \mathrm{mv}^{2}=\mathrm{mah}{ }^{\prime}$
or, $\quad \frac{1}{2} \times 2 \mathrm{gh}=\mathrm{g}\left(\frac{\sigma}{\rho}-1\right) \mathrm{h}^{\prime}$
or, $\mathrm{h}^{\prime}=\frac{20}{\left(\frac{2 \rho}{\rho}-1\right)}=20 \mathrm{~m}$
63.(b) $a=\frac{F}{m}=\frac{10}{20}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=\mathrm{u}+\mathrm{at}=0+0.5 \times 1=0.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}=\mathrm{KE}=\frac{1}{2} \times 20(0.5)^{2}=2.5 \mathrm{~J}$
64.(c) $\quad \frac{W^{\prime}}{W}=\frac{m^{\prime}}{m g}=\frac{g \frac{R^{2}}{(R+h)}}{g}$
or, $\quad \frac{\mathrm{W}^{\prime}}{\mathrm{W}}=\frac{\mathrm{R}^{2}}{\left(\mathrm{R}+\frac{\mathrm{R}}{2}\right)^{2}}=\frac{4}{9} \quad \therefore \quad \mathrm{~W}^{\prime}=\frac{4 \mathrm{~W}}{9}$
65.(c) At bottom, $\mathrm{P}_{1}=\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{w}}$

$$
\mathrm{V}_{1}=\frac{4 \pi}{3} \mathrm{r}^{3}
$$

At surface $P_{2}=P_{a}, V_{2}=\frac{4 \pi}{3}(2 r)^{3}=8 V_{1}$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

or, $\quad\left(\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{w}}\right) \mathrm{V}_{1}=\mathrm{P}_{\mathrm{a}} \times 8 \mathrm{~V}_{1}$
or, $\quad \mathrm{P}_{\mathrm{w}}=7 \mathrm{P}_{\mathrm{a}}$
or, $\quad \rho_{\mathrm{w}} \mathrm{gh}_{\mathrm{w}}=7 \times \rho_{\mathrm{m}} \mathrm{gh}_{\mathrm{m}}$
or, $\quad h_{w}=\frac{7 \times 13600 \times 0.76}{1000}=72 \mathrm{~m}$
66.(b) $\quad \mathrm{Q}=\frac{\mathrm{KA} \mathrm{d} \theta}{2 l} \times \mathrm{t}_{1}=\frac{\mathrm{K} 2 \mathrm{Ad} \theta}{l} \times \mathrm{t}_{2}$
or, $\frac{t_{1}}{2}=2 \mathrm{t}_{2} \quad$ or, $\mathrm{t}_{2}=\frac{12}{4}=3 \mathrm{~s}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-06-23 Hints \& Solution

67.(b) $\mathrm{f}=\mathrm{nf}_{0}=420 \ldots$ (1)
$\mathrm{f}^{\prime}=(\mathrm{n}+1) \mathrm{f}_{0}=490$
Diving (2) by (1)
$\frac{\mathrm{n}+1}{\mathrm{n}}=\frac{490}{420}=\frac{7}{6}$
or, $\quad 6 n+6=7 n$
or, $\mathrm{n}=6$
Now $\mathrm{f}=6 \times \frac{1}{2 l} \sqrt{\frac{\mathrm{~T}}{\mathrm{~m}}}$
or, $l=\left(3 \sqrt{\frac{360}{0.004}}\right) \times \frac{1}{420}=2.14 \mathrm{~m}$
68.(c) $\quad \frac{\mathrm{V}}{\mathrm{V}}=(\mathrm{n})^{2 / 3}$
or, $\quad \frac{40}{10}=(\mathrm{n})^{2 / 3}$
or, $\quad n=(4)^{3 / 2}=8$
69.(a) For A: $\mathrm{P}_{1} \times \mathrm{t}=\operatorname{msd} \theta$
or, $\quad P_{1}=\frac{\operatorname{msd} \theta}{t} \ldots$ (1)
For B: $P_{2} \times 2 t=m s d \theta$
or, $\quad \mathrm{P}_{2}=\frac{\operatorname{msd} \theta}{2 \mathrm{t}}$
When both are used $\left(P_{1}+P_{2}\right) t^{\prime}=\operatorname{msd} \theta$
or, $\mathrm{t}^{\prime}=\frac{\operatorname{msd} \theta}{\left(\frac{\operatorname{msd} \theta}{\mathrm{t}}+\frac{\mathrm{msd} \theta}{2 \mathrm{t}}\right)}=\frac{2 \mathrm{t} . \mathrm{t}}{3 \mathrm{t}}=\frac{2 \mathrm{t}}{3}$
70.(b) $\mathrm{E}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-(16 \mathrm{t}-4)$

$$
\begin{aligned}
& =-(16 \times 0.1-4) \\
& =24 \mathrm{~V}
\end{aligned}
$$

$$
=2.4 \mathrm{~V}
$$

$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}=\frac{2.4}{10}=0.24 \mathrm{~A}$
71.(b) Distance $=2.5 \beta=2.5 \frac{\mathrm{D} \lambda}{\mathrm{d}}$

$$
\begin{aligned}
& =\frac{2.5 \times 1 \times 6 \times 10^{-7}}{10^{-3}} \\
& =1.5 \times 10^{-3} \mathrm{~m}=1.5 \mathrm{~mm}
\end{aligned}
$$

72.(c) For objective
$\mathrm{u}_{0}=200 \mathrm{~cm} \mathrm{f} \mathrm{f}_{0}=50 \mathrm{~cm}$

$$
\mathrm{v}_{0}=\frac{\mathrm{f}_{0} \mathrm{u}_{0}}{\mathrm{u}_{0}-\mathrm{f}_{0}}=\frac{50 \times 200}{150}=\frac{200}{3} \mathrm{~cm}
$$

For eye lens

$$
\begin{aligned}
\mathrm{v}_{\mathrm{e}} & =25 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=5 \mathrm{~cm} \\
\mathrm{u}_{\mathrm{e}} & =\frac{\mathrm{f}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}}}{\mathrm{v}_{\mathrm{e}}+\mathrm{f}_{\mathrm{e}}}=\frac{5 \times 25}{25+5} \\
& =\frac{125}{30}=4.16 \mathrm{~cm}
\end{aligned}
$$

Length $=v_{0}+v_{e}=66.6+4.16=70.8 \mathrm{~cm}$
73.(d) For Lyman series

$$
\begin{aligned}
& \quad \frac{1}{\lambda_{\mathrm{L}}}=\mathrm{R}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \\
& \text { or, } \quad \lambda_{\mathrm{L}}=\frac{4}{3 \mathrm{R}} \ldots .(1) \\
& \text { And } \frac{1}{\lambda_{\mathrm{s}}}=\mathrm{R}\left[\frac{1}{1}\right]
\end{aligned}
$$

or, $\quad \lambda_{\mathrm{s}}=\frac{1}{\mathrm{R}} \ldots$ (2)
$\therefore \quad \frac{\lambda_{\mathrm{L}}}{\lambda_{\mathrm{s}}}=\frac{4}{3 \mathrm{R}} \times \frac{\mathrm{R}}{1}=\frac{4}{3}$
74.(d) $\frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{N}_{\mathrm{B}}}=\left(\frac{1}{\mathrm{e}}\right)^{2}$
or, $\quad \frac{\mathrm{N}_{0} \mathrm{e}^{-5 \lambda t}}{\mathrm{~N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}}=\left(\frac{1}{\mathrm{e}}\right)^{2}$
or, $\quad\left(\frac{1}{e}\right)^{4 \lambda t}=\left(\frac{1}{e}\right)^{2}$
or, $4 \lambda t=2 \quad$ or, $t=\frac{1}{2 \lambda}$
75.(b) Decarboxylation of salicylic acid gives benzene. During acylation of benzene, n-propyl carbocation (1°) electrophile rearranges to isopropyl carbocation (2°) so, isopropyl benzene i.e. cumene is formed.
76.(b) Alkylidene and alkylene compounds are always positional isomers. The no. of carboxylic acid (fatty acid) in $\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{COOH}$ are four.
77.(a) 2 moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ are chemically equivalent to 1 mole of I_{2} (two equivalents).
\therefore Eq. wt. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

$$
=\frac{2 \times \text { mol. mass }}{2}=\text { mol. } \mathrm{mass}
$$

78.(a) Charge passed $=\mathrm{I} \times \mathrm{t}=1 \times 965=965 \mathrm{C}$

As 2 F or $2 \times 96500=1 \mathrm{~mole}$
Hence, 96500 c will deposit
$=(1 \times 965) /(2 \times 96500)=1 / 200=0.005$ moles
79.(b) Eqv. Wt. of $\mathrm{KMnO}_{4}=\mathrm{mol} . \mathrm{wt} / \Delta \mathrm{O} . \mathrm{N}$.

$$
=\mathrm{mol} . \mathrm{wt} / 5
$$

$\mathrm{N}_{\mathrm{KMnO4}}=5 \mathrm{x}$ molarity
or, $\quad \mathrm{N}_{\mathrm{KMnO} 4}=5 \mathrm{x} 0.1=0.5$
Eqv. Wt of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\mathrm{mol}$. wt $/ \Delta \mathrm{O}$.N. of 2 C atoms

$$
=\mathrm{mol} . \mathrm{wt} / 2[4-3]=\mathrm{mol} \mathrm{wt} . / 2
$$

$\therefore \quad \mathrm{NC}_{2} \mathrm{O}_{4}{ }^{2-}=2 \mathrm{x}$ molarity
Meq. of $\mathrm{KMnO}_{4}=0.5 \times 20=10$
Meq of 50 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=0.1 \times 2 \times 50=10$
80.(c) Minimum mol. wt. $=\frac{32 \times 100}{4}$. At least one S atom must be present.
81. (c) We can use $\mathrm{PV}=\mathrm{nRT}$ for getting n and then number of molecules $=\mathrm{n} \times 6.023 \times 10^{23}$.
82.(d) We have $\mathrm{e}^{\mathrm{x}}=\mathrm{y}+\sqrt{1+\mathrm{y}^{2}}$
i.e. $\quad e^{x}-y=\sqrt{1+x^{2}}$
i.e. $\quad\left(e^{x}-y\right)^{2}=1+y^{2}$
i.e. $\quad e^{e x}-2 e^{x} y+y^{2}=1+y^{2}$
i.e. $\quad e^{2 x}-1=2 e^{x} y$
i.e. $y=\frac{e^{x}-e^{-x}}{2}$
83.(c) $\tan ^{-1} \frac{\mathrm{xy}}{\mathrm{zr}}+\tan ^{-1} \frac{\mathrm{yz}}{\mathrm{xr}}+\tan ^{-1} \frac{\mathrm{zx}}{\mathrm{yr}}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{\frac{y z}{x r}+\frac{z x}{y r}}{1-\frac{y z}{x r} \cdot \frac{z x}{y r}}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-06-23 Hints \& Solution

$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{\frac{x}{x y r}\left(y^{2}+x^{2}\right)}{\frac{r^{2}-z^{2}}{r^{2} x y}}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \cdot \frac{z r}{x y} \cdot y^{2}+x^{2}+x^{2}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{z r}{x y}=\tan ^{-1} \frac{x y}{z r}+\cot ^{-1} \frac{x y}{z r}=\frac{\pi}{2}$
84.(c) $|\vec{x}|=|\vec{y}|=|\vec{z}|=1$ and $\vec{x}+\vec{y}+\vec{z}=\overrightarrow{0}$

So, $\vec{y}+\vec{z}=-\vec{x}$
i.e. $\quad y^{2}+2 \vec{y} \cdot \vec{z}+z^{2}=x^{2}$
i.e. $\quad 1+2.11 \cos \theta+1=1$
i.e. $\quad \cos \theta=\frac{1}{2} \quad \therefore \theta=\frac{2 \pi}{3}$
85.(b) Total no. of distribution of prizes $=4^{3}=64 \&$ no of ways of getting all the prizes to one $=4$
\therefore Total no. of ways of distribution $=64-4=60$
86.(d) We have, $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{n} x^{n}$ Integrating, $\frac{(1+x)^{n+1}}{n+1}=c_{0} x+\frac{c_{1}}{2} x^{2}+\frac{c_{2}}{3} x^{3}+\frac{c_{3}}{4} x^{4}+\ldots$
$+c_{n} \frac{x^{n+1}}{n+1}+K$
Putting $\mathrm{x}=0, \mathrm{~K}=\frac{1}{\mathrm{n}+1}$
Then $\frac{(1+x)^{n+1}}{n+1}$

$$
=c_{0} x+\frac{x^{2}}{2} c_{1}+\frac{x^{3}}{3} c_{2}+\frac{x^{4}}{4} c_{3}+\ldots+\frac{x^{n+1}}{n+1} c_{n}+\frac{1}{n+1}
$$

Putting $\mathrm{x}=2, \frac{3^{\mathrm{n}+1}}{\mathrm{n}+1}-\frac{1}{\mathrm{n}+1}=2 \mathrm{c}_{0}+\frac{2^{2}}{2} \mathrm{c}_{1}+\frac{2^{3}}{3} \mathrm{c}_{2}+\frac{2^{4}}{4} \mathrm{c}_{3}$
$+\ldots .+\frac{2^{n+1}}{n+1} c_{n}$
87.(b) Put $a=K, b=K+d, c=K+2 d$

Also ($b-a$), $(-b)$, a are in G.P.
So, d, d, a are in GP
i.e. $\quad d^{2}=a d \Rightarrow a=d$

So, $\quad a: b: c=K: 2 K: 3 K$

$$
=1: 2: 3
$$

88.(d) $\quad\left(1+\omega^{2}\right)^{m}=\left(1+\omega^{4}\right)^{m}$
or, $\quad\left(1+\omega^{2}\right)^{\mathrm{m}}=(1+\omega)^{\mathrm{m}}$
i.e. $\quad(-\omega)^{m}=\left(-\omega^{2}\right)^{m} \Rightarrow\left(\frac{\omega^{2}}{\omega}\right)^{m}=1$
i.e. $\quad \omega^{\mathrm{m}}=1=\omega^{3} \Rightarrow \mathrm{~m}=3$
89.(c) Pair of lines: $x y-x-y+1=0$
i.e. $\quad x(y-1)=0$
i.e. $\quad(x-1)(y-1)=0$ $\mathrm{x}-1=0, \mathrm{y}-1=0$
As the lines are concurrent, so put $\mathrm{x}=1, \mathrm{y}=1$
in $\mathrm{ax}+2 \mathrm{y}-3=0$, we get $\mathrm{a} .1+2.1-3=0$
i.e. $\quad a=1$
90.(d) Here $\mathrm{m}=\tan 45^{\circ}=1, \mathrm{a}^{\prime}=\frac{\mathrm{a}}{4}$

So point of contact

$$
=\left(\frac{\mathrm{a}^{\prime}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}^{\prime}}{\mathrm{m}}\right)=\left(\frac{\mathrm{a}}{4.1^{2}}, 2 \cdot \frac{\mathrm{a}}{4.1}\right)=\left(\frac{\mathrm{a}}{4}, \frac{\mathrm{a}}{2}\right)
$$

91.(b) Equation of plane is $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=1$

Which meets the coordinate axes at $\left(\frac{1}{l}, 0,0\right)$, $\left(0, \frac{1}{\mathrm{~m}}, 0\right)$ and $\left(0,0, \frac{1}{\mathrm{n}}\right)$. Then the centroid of the triangle formed is $\left(\frac{1}{3 l}, \frac{1}{3 \mathrm{~m}}, \frac{1}{3 \mathrm{n}}\right)$. Thus $(31)^{2}+(3 \mathrm{~m})^{2}$
$+(3 n)^{2}=K$
i.e. $\quad \mathrm{K}=9\left(l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}\right)=9$
92.(c) For continuity, $\lim _{x \rightarrow 0} f(x)=f(0)$
i.e. $\quad 0=\mathrm{K}$
93.(c) Here $x=\sin ^{-1}\left(3 t-4 t^{3}\right)=3 \sin ^{-1} t$,

$$
\mathrm{y}=\cos ^{-1} \sqrt{1-\mathrm{t}^{2}}=\sin ^{-1} \mathrm{t}
$$

So, $x=3 y \quad$ i.e. $y=\frac{1}{3} x$
$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{3}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=0$
94.(b) Here $f(x)=x^{3}+\lambda x^{2}+\mu x+1$

So, $f^{\prime}(x)=3 x^{2}+2 \lambda x+\mu$
Then $\mathrm{f}^{\prime}(0)=0 \Rightarrow 3.0+2 . \lambda .0+\mu=0 \Rightarrow \mu=0$
and $\mathrm{f}^{\prime}(1)=0 \Rightarrow 3.1+2 \lambda .1+0=0 \Rightarrow \lambda=-\frac{3}{2}$
95.(c) $I=\int e^{\sqrt{x}} d x$ put $y=\sqrt{x}$
i.e. $\quad d y=\frac{1}{2 \sqrt{x}} d x$
i.e. $\quad d x=2 y d y$

Then $I=2 \int y e^{y} d y$

$$
=2\left[y \int e^{y} d y-\int\left(\frac{d y}{d x} \int e^{y} d y\right) d y\right]
$$

$$
=2\left[\mathrm{ye}^{\mathrm{y}}-\mathrm{e}^{\mathrm{y}}\right]+\mathrm{c}=2 \mathrm{e}^{\sqrt{\mathrm{x}}}(\sqrt{\mathrm{x}}-1)+\mathrm{c}
$$

96.(c) Here $\frac{d y}{d x}=2 x+1$

So, $y=x^{2}+x+K$
It passes through the point $(1,2)$.
So, $2=1+1+K \Rightarrow K=0$
The curve is $y=x^{2}+x$
So it crosses x -axis a points 0 and -1
$\therefore \quad$ Required area $=\int_{-1}^{0} y d x=\int_{-1}^{0}\left(x^{2}+x\right) d x$
$=0-\left[-\frac{1}{3}+\frac{1}{2}\right]=-\frac{1}{6}=\frac{1}{6}$ sq. units
98.c 99.a 100.c

