PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-06-23 Hints & Solution

Section - I

$$\rho = \frac{m}{V}$$

or,
$$\frac{\Delta \rho}{\rho} = \pm \left(\frac{\Delta m}{m} + \frac{\Delta V}{V}\right) \times 100\%$$
$$= \pm \left(\frac{0.01}{20} + \frac{0.1}{5}\right) \times 100\% = \pm 2\%$$

When angle between \vec{a} & instantaneous velocity is not 2.(b) same so angle between \vec{a} and $\vec{v} \neq 0^{\circ}$ due to which path is parabola.

$$W - F_f = ma$$

or, $F_f = W - \frac{mg}{4} = W - \frac{W}{4} = \frac{3W}{4}$

4.(d) 5.(b)

3.(c)

1. (b)

For 1st PV = NKT
or,
$$N_1 = \frac{PV}{KT}$$

For 2nd P'V' = N₂KT₂
or, $N_2 = \frac{2P}{K \times 2T} \frac{V}{4} = \frac{PV}{4KT}$
Now $\frac{N_1}{N_2} = \frac{\frac{PV}{KT}}{\frac{PV}{4KT}} = 4:1$

6.(c) If temp. of surrounding is more than temp. of body then rate of energy absorbed is more than rate of energy radiated.

7.(a) Frequency remain same while moving from one medium to another medium.

- First overtone is 2nd harmonic 8.(d) So, $\lambda = l$ 9.(d)
- When $+3\mu c$ is added on $+3\mu c$ and $-3\mu c$ then net charge on 2nd ball will be zero due to which force become zero.
- $C=\frac{\epsilon_{r}\epsilon_{0}A}{d}\text{,}$ capacity depends on area, nature of matter 10.(d) in between plates, distance between plates.
- Current through bulb 1 & 4 is equal so the brightness 11.(c) of them will be equal.

12.(a) In series

$$P_{eq} = \frac{P}{n} = \frac{40}{2} = 20 \text{ W}$$

or,

14.(b)

13.(c)
$$V = IR$$

$$I = \frac{1}{R} = \frac{200}{50} = 4A$$

$$E = \frac{1}{2}LI^{2} = \frac{1}{2} \times 5 \times 10^{-3} \times 4^{2} = 0.04 \text{ J} = 40 \text{ mJ}$$
$$4 = f + x \text{ y} = f + y$$

Now
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

or,
$$\frac{1}{f} = \frac{1}{f+x} + \frac{1}{f+y}$$

or, $\frac{1}{f} = \frac{f+y+f+x}{(f+x)(f+y)}$
or, $f^2 + fx + fy + xy = 2f^2 + fx + fy$

$$f^{2} + fx + fy + xy = 2f^{2} + fx + fy$$
$$f^{2} = xy$$

15.(b)
$$\mu = \frac{\sin\frac{A + \delta_{\min}}{2}}{\sin\frac{A}{2}} = \frac{\sin\left(\frac{60 + 30}{2}\right)}{\sin\frac{60}{2}}$$
$$= \frac{1}{\sqrt{2}} \times \frac{2}{1} = \sqrt{2}$$

16.(d)
$$\lambda = \frac{h}{p} = \frac{h}{nh} \times \frac{1}{2\pi r}$$
$$= \frac{2\pi(0.53 \times 4) \times 10^{-10}}{2} = 6.6 \text{ Å}$$

17.(b)
$$\beta = \frac{\Delta I_c}{\Delta I_b} = \frac{\Delta I_c}{\Delta I_c - \Delta I_c}$$
or, 100($\Delta I_c - 1$) = 1

or,
$$\Delta I_e = 1 + \frac{1}{100} = 1.01 \text{ mA}$$

- Atomic number of Na is 11 so Na⁺ contains 10 18.(d) electrons, 11 protons and 12 neutrons.
- 19.(b) Zn, Cd and Hg have completely filled d-orbitals so they do not show transition behavior as well as variable valencies. 20.(d) S2- divalent

Valency of metal = 3

Hence, formula of metal chloride = MCl_3

- 21.(b) Since, I donate electron pair to I2
- 22.(d) Pauli's exclusion principle = in a given atom no. two atoms can have the same value of all the quantum numbers.

Hund's rule \rightarrow When orbitals of same energy are available the electrons tend to occupy separate orbitals with same spin rather than getting paired and pairing occurs only with opposite spin.

Aufbau principle states that orbitals having low energy being filled first.

Uncertainty principle: It is impossible to measure both position and momentum of electron simultaneously with absolute precision $\Delta x \times \Delta p \ge h/4\pi$

- 23.(d) Due to the presence of dissolved hardness-producing salts, the boiling point of water is elevated. Elevation in boiling point is one of the most important colligative property. All the other options are correct.
- 24. (d) N₂O is used in surgery. It is also known as laughing gas.
- 25.(b) Bronsted -lowry concept. According to this concept, acid is proton donor and base is proton acceptor. In given equation HCl donates proton and H2O accepts proton, so H₂O is base and HCl is acid. 26.(b)
- 27.(c) It contains > CHOH group
- 28.(b) These are keto and enol form of esters so known as tautomers.
- 29.(c) Total no. of elements = 5, no. of subsets having 3 elements = c(5, 3) = 10

30.(a)
$$\sec^2\theta = \frac{4}{3}$$
 i.e. $\cos^2\theta = \frac{3}{4}$ i.e. $\cos^2\theta = \left(\frac{\sqrt{2}}{2}\right)^2$
i.e. $\cos^2\theta = \cos^2\frac{\pi}{6}$ $\therefore \theta = n\pi \pm \frac{\pi}{6}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-06-23 Hints & Solution					
31.(b)	asinA = bsinB	47. (b)	Put $t = \sqrt{x}$		
	i.e. $a \frac{a}{2R} = b \frac{b}{2R}$		i.e. $dt = \frac{1}{2}\sqrt{x} dx$.		
	i.e. $a^2 = b^2$		So $\frac{1}{2}\int \sec^2 t dt = \tan t + c = \tan \sqrt{x} + c$		
	i.e. $a = b$ \therefore A is isosceles		$so, 2 \int so t dt - tan + c - tan \sqrt{x} + c$		
22 (1)	$ \vec{a} \times \vec{b} = 3$	48. (b)	Rea. area $\int_{0} \sin x dx = \int_{0} \sin x dx$		
32.(0)	$\overline{\vec{a}.\vec{b}} = \sqrt{3}$		$= \left[-\cos x\right]_{0}^{\pi}$		
	$\frac{absin\theta}{abcos\theta} = \sqrt{3} \tan\theta = \sqrt{3}$	40.1	= (1+1) = 2 sq units		
	i.e. $\theta = 60^{\circ}$	49.b 55.c	50.b 51.b 52.a 53.b 54.a 56.a 57.a 58.c 59.d 60.b		
33.(b)	Logarithm is defined for positive values only so option 'b'				
34.(c)	Product of roots = 1		$\frac{\text{Section - II}}{2h}$		
	i.e. $\frac{-5}{K-2} = 1$	61. (d)	$h = \overline{2} gT^2$ $T = \sqrt{\frac{g}{g}}$		
	i.e. $K - 2 = -5$		After $\frac{T}{2}$, $h_1 = \frac{1}{2}g\left(\frac{T}{2}\right)^2 = \frac{h}{4}$		
35.(a)	i.e. $K = -3$ By definition the determinant of a matrix and its		Height from ground		
36(h)	transpose are equal, so 'a' For no solution $D = 0$		$\mathbf{h'} = \mathbf{h} - \frac{\mathbf{h}}{4} = \frac{3\mathbf{h}}{4}$		
50.(0)	$ \lambda ^3 _{-0}$	62.(c)	KE of ball = work done against upthrust		
	$\begin{array}{c c} \vdots \\ 1 & 2 \end{array} = 0$		or, $\frac{1}{2}$ mv ² = mah'		
	i.e. $2\lambda - 3 = 0$		or. $\frac{1}{2} \times 2gh = g\left(\frac{\sigma}{2} - 1\right)h'$		
37 (d)	1.c. $\lambda = \frac{1}{2}$ The required line is $3(x - 1) + 5(x - 2) = 0$		$\frac{1}{20}$		
57. (u)	i.e. $3x + 5y - 13 = 0$		or, $h' = \frac{20}{(20-1)} = 20 \text{ m}$		
38. (c)	Given equations are $5x + 12y + 8 = 0$, $10x + 24y - 3 = 0$ i.e. $10x + 24y + 16 = 0$, $10x + 24y - 3 = 0$		$\left(\rho^{-1}\right)$		
	$\therefore \text{Distance} = \pm \frac{16 - (-3)}{1000} = \frac{19}{26} \text{ units}$	63.(b)	$a = \frac{1}{m} = \frac{10}{20} = 0.5 \text{ m/s}^2$		
20 (1)	$\sqrt{10^2 + 24^2}$ 20		$v = u + at = 0 + 0.5 \times 1 = 0.5 m/s$		
39. (D)	Radius = \sqrt{g} + 1 - c = $\sqrt{\sin \theta} + \cos \theta + 8$ = $\sqrt{9} = 3$		$W = KE = \frac{1}{2} \times 20(0.5)^2 = 2.5 J$		
40. (d)	Here, $\left(\frac{x}{h}\right)^2 + \left(\frac{y}{h}\right)^2 = \cos^2\theta + \sin^2\theta, \frac{x^2}{h^2} + \frac{y^2}{h^2} = 1$,		W' mg' $\frac{R^2}{g(R+h)}$		
. /	which is an ellipse	64.(c)	$\overline{W} = \frac{mg}{mg} = \frac{g}{g}$		
41. (b)	Given $x^2 - 4y^2 = 1$		or, $\frac{W}{W} = \frac{R}{\left(R + \frac{R}{2}\right)^2} = \frac{4}{9}$ \therefore $W' = \frac{4W}{9}$		
	i.e. $\frac{x}{1} - \frac{y}{1} = 1$	(5.())	$\begin{pmatrix} \kappa + 2 \end{pmatrix}$		
	4	65.(c)	At bottom, $P_1 = P_a + P_w$		
	So, $e = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$		$V_1 = \frac{1}{3}r$		
42. (c)	The equation is true only for $x = 0$, $y = 0$ So it represents z-axis		At surface $P_2 = P_a$, $V_2 = \frac{4\pi}{3} (2r)^3 = 8V_1$		
43 (a)	$\lim_{x \to \infty} \frac{e^{\sin x} - 1}{e^{\sin x} - 1} = \lim_{x \to \infty} \frac{e^{\sin x} - 1}{e^{\sin x}} = 1, 1 = 1$		$P_1V_1 = P_2V_2$ or $(P_1 + P_2)V_2 = P_1 \times 8V_2$		
44. (c)	$x \rightarrow 0$ x $x \rightarrow 0$ sinx x $x \rightarrow 1$ For point of discontinuity. $x - 3 = 0$		or, $P_w = 7P_a$		
45 (1)	i.e. $x = 3$		or, $\rho_w g h_w = 7 \times \rho_m g h_m$, $7 \times 13600 \times 0.76$		
45. (b)	By formula, option 'b' is correct. $2\frac{dy}{dt} = 0$, 2y		or, $h_w = \frac{10000}{1000} = 72 \text{ m}$		
40. (C)	$2\frac{dx}{dx} = 0 - 2x$	66.(b)	$Q = \frac{KA d\theta}{2l} \times t_1 = \frac{K2Ad\theta}{l} \times t_2$		
	i.e. $\frac{dy}{dx} = -1$		or, $\frac{t_1}{2} = 2t_2$ or, $t_2 = \frac{12}{4} = 3s$		
	i.e. $\tan \theta = -1$ $\theta = 135^{\circ}$		· 2 · 4		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-06-23 Hints & Solution				
67.(b)	$f = nf_0 = 420 \dots (1)$ f' = (n + 1) f_0 = 490 \ldots (2)		or, $\lambda_s = \frac{1}{R} \dots (2)$	
	Diving (2) by (1) n+1 - 490 - 7		$\therefore \qquad \frac{\lambda_{L}}{\lambda_{s}} = \frac{4}{3R} \times \frac{R}{1} = \frac{4}{3}$	
	n = 420 = 6 or, $6n + 6 = 7n$	74.(d)	$\frac{N_A}{N_B} = \left(\frac{1}{e}\right)^2$	
	or, $n = 6$		or, $\frac{N_0 e^{-5\lambda t}}{\sqrt{1-e^{-\lambda t}}} = \left(\frac{1}{2}\right)^2$	
	Now $f = 6 \times \frac{1}{2l} \sqrt{\frac{1}{m}}$		or, $\left(\frac{1}{e}\right)^{4\lambda t} = \left(\frac{1}{e}\right)^2$	
	or, $l = \left(3\sqrt{\frac{200}{0.004}} \right) \times \frac{420}{420} = 2.14 \text{ m}$		or, $4\lambda t = 2$ or, $t = \frac{1}{2\lambda}$	
68.(c)	$\frac{\mathbf{v}}{\mathbf{v}} = (\mathbf{n})^{2/3}$	75.(b)	Decarboxylation of salicylic acid gives benzene	
60 (a)	or, $\frac{40}{10} = (n)^{2/3}$ or, $n = (4)^{3/2} = 8$		During acylation of benzene, n-propyl carbocation (1°) electrophile rearranges to isopropyl carbocation (2°) so isopropyl benzene i e cumene is formed	
09.(a)	or, $P_1 = \frac{\text{msd}\theta}{\text{t}} \dots (1)$	76.(b)	Alkylidene and alkylene compounds are always positional isomers. The no. of carboxylic acid (fatty acid) in C-H _a COOH are four	
	For B: $P_2 \times 2t = msd\theta$ or, $P_2 = \frac{msd\theta}{2t} \dots (2)$	77.(a)	2 moles of Na_2SO_3 are chemically equivalent to 1 mole of I_2 (two equivalents).	
	When both are used $(P_1 + P_2) t' = msd\theta$		$\therefore \text{ Eq. wt. of } Na_2S_2O_3$ $2 \times \text{mol.mass}$	
	or, $t' = \frac{msd\theta}{(msd\theta, msd\theta)} = \frac{2t}{3t} = \frac{2t}{3}$	78 (2)	$=\frac{1}{2}$ = mol.mass	
	$\left(\frac{t}{t}+\frac{2t}{2t}\right)$	70.(a)	As 2F or 2×96500 = 1 mole	
70.(b)	$\mathbf{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -(16t - 4)$		Hence, 96500 c will deposit = $(1 \times 965)/(2 \times 96500) = 1/200 = 0.005$ moles	
	$= -(16 \times 0.1 - 4)$ = 2.4 V	79.(b)	Eqv. Wt. of $KMnO_4 = mol.wt/\Delta O.N.$ = mol. wt/5	
	$I = \frac{E}{R} = \frac{2.4}{10} = 0.24 \text{ A}$		$N_{KMnO4} = 5x \text{ molarity}$ or. $N_{KMnO4} = 5x0.1 = 0.5$	
71.(b)	Distance = $2.5 \beta = 2.5 \frac{D\lambda}{d}$		Eqv. Wt of $C_2O_4^{-2}$ = mol. wt/ $\Delta O.N.$ of 2 C atoms = mol.wt/ 2 [4-3] = mol wt./2	
	$=\frac{2.5 \times 1 \times 6 \times 10^{-7}}{10^{-3}}$		$\therefore \text{ NC}_2\text{O4}^2 = 2x \text{ molarity}$	
72 (c)	$= 1.5 \times 10^{-3} \text{ m} = 1.5 \text{ mm}$		Meq. of KMnO ₄ = $0.5 \times 20 = 10$ Meq of 50 ml of $0.1M H_2C_2O_4 = 0.1 \times 2 \times 50 = 10$	
/2.(0)	$u_0 = 200 \text{ cm } f_0 = 50 \text{ cm}$	80.(c)	Minimum mol. wt. = $\frac{32 \times 100}{4}$. At least one S atom	
	$v_0 = \frac{I_0 u_0}{u_0 - f_0} = \frac{50 \times 200}{150} = \frac{200}{3} \text{ cm}$	81 (c)	must be present. We can use $PV = nPT$ for getting n and then number	
	For eye lens $v_a = 25 \text{ cm}$ $f_a = 5 \text{ cm}$	81. (C)	of molecules = $n \times 6.023 \times 10^{23}$.	
	$u_e = \frac{f_e \cdot v_e}{v_e + f} = \frac{5 \times 25}{25 + 5}$	82.(d)	We have $e^x = y + \sqrt{1 + y^2}$ i.e. $e^x - y = \sqrt{1 + x^2}$	
	$v_e + 1_e = 25 + 5$ $-\frac{125}{2} - 4.16 \text{ cm}$		i.e. $(e^x - y)^2 = 1 + y^2$	
	$30^{-4.16}$ Example 10 cm Length = $v_0 + v_e = 66.6 + 4.16 = 70.8$ cm		i.e. $e^{ex} - 2e^{x}y + y^{2} = 1 + y^{2}$ i.e. $e^{2x} - 1 = 2e^{x}y$	
73.(d)	For Lyman series		i.e. $y = \frac{e^x - e^{-x}}{2}$	
	$\frac{1}{\lambda_{\rm L}} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$	83.(c)	$\tan^{-1}\frac{xy}{zr} + \tan^{-1}\frac{yz}{xr} + \tan^{-1}\frac{zx}{yr}$	
	or, $\lambda_{\rm L} = \frac{1}{3R} \dots (1)$		$\frac{YZ}{XT} + \frac{ZX}{VT}$	
	And $\frac{1}{\lambda_s} = R \left[\frac{1}{1}\right]$		$= \tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{xr}{1 - \frac{yz}{xr}} \frac{zx}{yr}$	
		I	-	

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-06-23 Hints & Solution

$$\begin{aligned} &= \tan^{-1} \frac{xy}{xr} + \tan^{-1} \frac{x}{yr} (y^{2} + x^{2}) \\ &= \tan^{-1} \frac{xy}{xr} + \tan^{-1} \cdot \frac{xr}{xy} \frac{y^{2} + x^{2}}{r^{2}xy} \\ &= \tan^{-1} \frac{xy}{xr} + \tan^{-1} \frac{xr}{xy} \frac{y^{2} + x^{2}}{r^{2}xy} \\ &= \tan^{-1} \frac{xy}{xr} + \tan^{-1} \frac{xr}{xy} = \tan^{-1} \frac{xy}{xr} + \cot^{-1} \frac{xy}{xr} = \frac{\pi}{2} \end{aligned}$$
84.(c) $|\vec{x}| = |\vec{y}| = |\vec{z}| = 1 \text{ and } \vec{x} + \vec{y} + \vec{z} = \vec{0} \\ &\text{So, } \vec{y} + \vec{z} = -\vec{x} \\ &\text{i.e. } y^{2} + 2\vec{y}.\vec{z} + z^{2} = x^{2} \\ &\text{i.e. } 1 + 2.11 \cos\theta + 1 = 1 \\ &\text{i.e. } \cos\theta = -\frac{1}{2} \qquad \therefore \theta = \frac{2\pi}{3} \end{aligned}$
85.(b) Total no. of distribution of prizes = 4^{3} = 64 & \text{k no of } ways of getting all the prizes to one = 4 \\ &\therefore \text{ Total no. of distribution of prizes + 64^{3} + ... + 6x^{n} \\ &\text{Integrating, } (\frac{1 + x)^{n}}{n + 1} = c_{0}x + \frac{c_{1}}{2}x^{2} + \frac{c_{3}}{3}x^{3} + \frac{c_{3}}{4}x^{4} + ... \\ &+ c_{n}\frac{x^{n+1}}{n+1} + K \\ &\text{Putting } x = 0, K = \frac{1}{n+1} \\ &= c_{0}x + \frac{x^{2}}{2}c_{1} + \frac{x^{3}}{3}c_{2} + \frac{x^{4}}{4}c_{3} + ... + \frac{x^{n+1}}{n+1}c_{n} + \frac{1}{n+1} \\ &= c_{0}x + \frac{x^{2}}{2}c_{1} + \frac{x^{3}}{3}c_{2} + \frac{x^{4}}{4}c_{3} + ... + \frac{x^{n+1}}{n+1}c_{n} + \frac{1}{n+1} \\ &\text{Putting } x = 2, \frac{3^{n+1}}{n+1} - \frac{1}{n+1} = 2c_{0} + \frac{2^{2}}{2}c_{1} + \frac{2^{3}}{3}c_{2} + \frac{2^{4}}{4}c_{3} \\ &+ ... + \frac{2^{n+1}}{n+1}c_{n} \\ &\text{87.(b) Put } a = K, b = K + d, c = K + 2d \\ &\text{Also } (b - a), (-b), a \text{ are in GP} \\ &\text{i.e. } d^{2} = ad \Rightarrow a = d \\ &\text{So, } a : b : c = K : 2K : 3K \\ &= 1 : 2 : 3 \\ &\text{88.(d) } (1 + \omega^{2})^{m} = (1 + \omega^{3})^{m} \\ &\text{i.e. } (-\omega)^{m} = (-\omega^{2})^{m} = (\frac{\omega^{2}}{\omega})^{m} = 1 \\ &\text{i.e. } (-\omega)^{m} = 1 = \omega^{3} \Rightarrow m = 3 \\ &\text{89.(c) Pair of lines: } xy - xy + 1 = 0 \\ &\text{i.e. } (x - 1) (y - 1) = 0 \\ &\text{i.e. } (x - 1) (y - 1) = 0 \\ &\text{i.e. } (x - 1) (y - 1) = 0 \\ &\text{i.e. } (x - 1) (y - 1) = 0 \\ &\text{i.e. } (x - 1) (y - 1) = 0 \\ &\text{i.e. } a = 1 \\ &y = 1 \end{bmatrix}

90.(d) Here m = tan45° = 1, a' =
$$\frac{a}{4}$$

So point of contact
 $= \left(\frac{a'}{m^2}, \frac{2a'}{m}\right) = \left(\frac{a}{4, 1^2}, 2, \frac{a}{4, 1}\right) = \left(\frac{a}{4}, \frac{a}{2}\right)$
91.(b) Equation of plane is $lx + my + nz = 1$
Which meets the coordinate axes at $\left(\frac{1}{l}, 0, 0\right)$,
 $\left(0, \frac{1}{m}, 0\right)$ and $\left(0, 0, \frac{1}{n}\right)$. Then the centroid of the
triangle formed is $\left(\frac{1}{3l'}, \frac{1}{3m'}, \frac{1}{3n}\right)$. Thus $(31)^2 + (3m)^2$
 $+ (3n)^2 = K$
i.e. $K = 9(l^2 + m^2 + n^2) = 9$
92.(c) For continuity, $x \to 0$ f(x) = f(0)
i.e. $0 = K$
93.(c) Here x = sin⁻¹(3t - 4t^3) = 3sin⁻¹t,
 $y = \cos^{-1}\sqrt{1-t^2} = \sin^{-1}t$
So, x = 3y i.e. $y = \frac{1}{3}x$
 $\therefore \frac{dy}{dx} = \frac{1}{3}$ and $\frac{d^2y}{dx^2} = 0$
94.(b) Here f(x) = x^3 + \lambdax^2 + \mux + 1
So, f'(x) = 3x^2 + 2\lambdax + μ
Then f'(0) = $0 \Rightarrow 3.0 + 2\lambda.0 + \mu = 0 \Rightarrow \mu = 0$
and f'(1) = $0 \Rightarrow 3.1 + 2\lambda.1 + 0 = 0 \Rightarrow \lambda = -\frac{3}{2}$
95.(c) $I = \int e^{\sqrt{x}} dx put y = \sqrt{x}$
i.e. $dx = 2y dy$
Then $I = 2\int ye^{y} dy$
 $= 2\left[y \int e^{y} dy - \int \left(\frac{dy}{dx} \int e^{y} dy\right) dy\right]$
 $= 2[ye^{y} - e^{y}] + c = 2e^{\sqrt{x}}(\sqrt{x} - 1) + c$
96.(c) Here $\frac{dy}{dx} = 2x + 1$
So, $y = x^2 + x + K$
It passes through the point (1, 2).
So, $2 = 1 + 1 + K \Rightarrow K = 0$
The curve is $y = x^2 + x$
So it crosses x-axis a points 0 and -1
 \therefore Required area $= \int_{-1}^{0} ydx = \int_{-1}^{0} (x^2 + x) dx$
 $= 0 - \left[-\frac{1}{3} + \frac{1}{2}\right] = -\frac{1}{6} = \frac{1}{6}$ sq. units
97.d 98.c 99.a 100.c

....Best of Luck....