Section - I

1. (b) For given velocity range will be maximum if $\sin 2 \theta$ is maximum. i.e. 1 . So $145-\theta$ is least.
2. (d) $\mathrm{I}=\frac{1}{4} \mathrm{mR}^{2}$
or, $\quad \mathrm{mR}^{2}=4 \mathrm{I}$
Moment of inertia about tangent parallel to diameter is
$\mathrm{I}^{1}=\mathrm{I}_{\mathrm{CM}}+\mathrm{mR}^{2}=\frac{1}{4} \mathrm{mR}^{2}+\mathrm{mR}^{2}=\frac{5}{4} \mathrm{mR}^{2}$

$$
=5 \mathrm{I}
$$

3. (a) $\frac{\rho g h}{2} \times 2 \pi r h=\lambda r^{2} \times \rho g h$
or, $\mathrm{h}=\mathrm{r}$
4. (b) Boiling point decreases if pressure of atmosphere above water decreases.
5. (a) In adiabatic process $\mathrm{dQ}=0$ so $\mathrm{d} \omega=\mathrm{du}$, in compression $d \omega$ is negative so $d u$ is positive so temperature rises.
6. (c) $\frac{I_{\max }}{\mathrm{I}_{\min }}=\left(\frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{\mathrm{a}_{1}-\mathrm{a}_{2}}\right)^{2}=\left(\frac{5+3}{5-3}\right)^{2}=16: 1$
7. (c) $2^{\text {nd }}$ overtone $=3^{\text {rd }}$ harmonics

$$
=3 \text { lopes }
$$

No. of antinodes $=$ No of loops $=3$
No. of nodes $=$ No of antinodes $+1=4$
8. (a) Force on each is $F=\frac{K Q_{1} Q_{2}}{r^{2}}$ remain same.
9. (c) Total electric flux $=\frac{\mathrm{Q}}{\varepsilon_{0}}$

There are 6 sides in cube so flux through each face is flux through face $=\frac{Q}{6 \varepsilon_{0}}$
10. (b) $I=\frac{E}{R+\frac{r}{2}}=\frac{2 E}{R+2 r}$
or, $\frac{1}{3+\frac{r}{2}}=\frac{2}{3+2 r}$
or, $3+2 r=6+r$
or, $r=3 \Omega$
11. (a) $\frac{\mathrm{P}^{\prime}}{\mathrm{P}}=\left(\frac{\mathrm{V}^{\prime}}{\mathrm{V}^{\prime}}\right)^{2}=\left(\frac{160}{200}\right)^{2}$
or, $\mathrm{P}^{\prime}=32 \omega$
12. (b) $\mathrm{M}=\mathrm{m} \times l$
or, $m=\frac{M}{l}$

New magnetic moment $\left(M^{\prime}\right)=m \times N S$

$$
\begin{aligned}
& =\mathrm{m} \times 20 \mathrm{~N} \\
& =\frac{\mathrm{M}}{l} \times 2 \times \frac{l}{2} \cos 60 \\
& =\frac{\mathrm{M}}{2}
\end{aligned}
$$

13. (a) $\frac{\mathrm{E}^{\prime}}{\mathrm{E}}=\left(\frac{\mathrm{r}}{\mathrm{r}^{\prime}}\right)^{2}=\left(\frac{40}{50}\right)^{2}=0.64$
$\%$ decrease $=\left(1-\frac{E^{\prime}}{E}\right) \times 100 \%$

$$
=(1-0.64) \times 100 \%=36 \%
$$

14. (b) $\mu=\frac{\sin i}{\sin r}$
for minimum deviation $r=\frac{4}{2}$ so $\sin I=\sqrt{2} \times$
$\sin \frac{60}{2}=\frac{1}{\sqrt{2}}=\sin 45^{\circ}$
$\therefore \quad i=45^{\circ}$
15. (d) When a particle disintegrate then momentum of each fragment will be equal $\&$ opposite so $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ remain same.
16. (a) $\frac{\mathrm{r}_{\mathrm{Al}}}{\mathrm{r}_{\mathrm{Te}}}=\left(\frac{\mathrm{A}_{\mathrm{al}}}{\mathrm{A}_{\mathrm{Te}}}\right)^{\frac{1}{3}}=\left(\frac{27}{125}\right)^{\frac{1}{3}}=\frac{3}{5}$
17. (c) Voltage gain $\left(\mathrm{A}_{\mathrm{v}}\right)=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {in }}}=\frac{\mathrm{I}_{\mathrm{c}} \mathrm{R}_{\text {out }}}{\mathrm{I}_{\mathrm{b}} \mathrm{R}_{\text {in }}}=\beta \times \frac{5000}{500}$

$$
\begin{aligned}
& =60 \times 10 \\
& =600
\end{aligned}
$$

18.(a) Due to self linking property of carbon to result long chain, branched chain and cyclic chain.
19.(d) Carbone eg CH_{2} (6 electrons)

Nitrene eg $\mathrm{CH}_{3} \mathrm{~N}$ (6 electrons)
Carbonium ion $\mathrm{eg} \mathrm{CH}_{3}{ }^{+}$(6 electrons)
Free radical eg CH_{3} (7 electrons)
20.(a)
21.(c)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-05-26 Hints \& Solution

22.(b) $3 \mathrm{Fe}+$ conc $^{\mathrm{n}} 8 \mathrm{HNO}_{3} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{NO}_{2}$
23.(a) ZnO is amphoteric oxide but other are basic
24.(c) $2 \mathrm{NaOH}+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
25.(b) Na is highly electropositive metal
26.(c) $\Delta \mathrm{n}=1-4=-3$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\text {An }}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-3}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{(\mathrm{RT})^{3}}$
$\therefore \mathrm{K}_{\mathrm{c}}>\mathrm{K}_{\mathrm{p}}$
27.(b)
28.(c)
29.(a) Total no. of elements $=5$.

No. of subsets having not more than 3 elements

$$
=c(5,3)+c(5,2)+c(5,1)+c(5,0)
$$

$$
=10+10+5+1=16
$$

30.(d) $2 \tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x}$
i.e. $2 \tan ^{2} x=1+\tan ^{2} x$
i.e. $\tan ^{2} x=1$
i.e. $\tan ^{2} x=\tan ^{2} \frac{\pi}{4}$
$\therefore \quad \mathrm{x} \pi \pm \frac{\pi}{4}$
31.(d) We have $\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}$
i.e. $\frac{3}{\frac{3}{4}}=\frac{4}{\sin B}$
i.e. $\sin B=1$

$$
B=90^{\circ}
$$

32.(c) $\overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{a}}$ i.e. $|\overrightarrow{\mathrm{a}}|=\lambda \hat{\mathrm{a}} \mid$
i.e. $\lambda=|\vec{a}|$
33.(b)
$1-\log _{e} 2+\frac{\left(\log _{e} 2\right)^{2}}{2}$ $\frac{\left(\log _{\mathrm{c}} 2\right)^{3}}{3!}+\ldots=\mathrm{e}^{-\log _{\mathrm{e}} 2}$
$=e^{\log _{e} \frac{1}{2}}=\frac{1}{2}$
34.(d) Sum of roots $=0$
i.e. $-\frac{\lambda-5}{\lambda-2}=0$
i.e. $\lambda=5$
35.(b) We have $\mid \mathrm{A}$. Adj $\mathrm{A}|=|\mathrm{A}|| \mathrm{I} \mid=8.1=8$
36.(b) Here $\mathrm{D}=\left|\begin{array}{cc}1 & 3 \\ 4 & -1\end{array}\right|=-1-12=-13 \neq 0$

So it has unique solution.
37.(c) The required line is $5(x-2)-3(y-3)=0$ i.e. $5 x-3 y-19=0$
38.(d) y-coordinates of centroid $=0$
i.e. $\frac{a+b-3}{3}=0$
i.e. $a+b=3$
39.(b) By definition 'b'
40.(a) Here $\mathrm{a}^{2}=25, \mathrm{~b}^{2}=9, \mathrm{e}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{1-\frac{9}{25}}$

$$
=\sqrt{\frac{16}{25}}=\frac{4}{5}
$$

41.(d) Here $16 x^{2}-9 y^{2}=144$
i.e. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

So $\left|\mathrm{PS}_{1}-\mathrm{PS}_{2}\right|=2.3=6$
42.(d) By definition, option ' d ' is correct.
43.(b) $\lim _{x \rightarrow 0} \frac{\sin a x-\sin b x}{x}=\lim _{x \rightarrow 0}\left[\frac{\operatorname{sinax}}{a x} \cdot a-\frac{\sin b x}{b x} \cdot b\right]$
$=1 . \mathrm{a}-1 . \mathrm{b}=\mathrm{a}-\mathrm{b}$
44.(d) $\begin{array}{ll}\lim _{x \rightarrow 0} f(x)=f(0) \\ & \text { i.e. } \cos 0+1=K\end{array} \quad$ i.e. $K=2$
45.(a) $\mathrm{e}^{3 \log _{\mathrm{e}} \mathrm{x}}=\mathrm{x}^{3}$ and its derivative is $3 \mathrm{x}^{2}$
46.(c) $\quad f^{\prime}(x)=2 x-4$

So, $\mathrm{f}^{\prime}(\mathrm{x})>0$
i.e. $2 x-4>0$
i.e. $x>2$
47.(b) Put $1+e^{x}=y$
i.e. $d y=e^{x} d x$

Then $\int \frac{e^{x} d x}{1+e^{x}}=\int \frac{d y}{d x}=\ln y+c=\ln \left(1+e^{x}\right)+c$
48.(b) Req. area $=\int_{1}^{2} d x=\int_{1}^{2} \mathrm{x}^{3} \mathrm{dx}=\left[\frac{\mathrm{x}^{4}}{4}\right]_{1}^{2}=\frac{16}{4}-\frac{1}{4}$
$=\frac{15}{4}$ sq. units
49. (a)
50. (a)
51. (d)
52. (c)
53. (b
54. (b)
56. (a)
57. (a)
58. (b)
59. (b)
60. (b)
55. (c)

Section - II

61.(b) $\mathrm{a}_{\mathrm{t}}=2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{30^{2}}{500}=\frac{9}{5}=1.8 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \quad \mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{c}}{ }^{2}+\mathrm{a}_{\mathrm{t}}{ }^{2}}=\sqrt{1.8^{2}+2^{2}}$
62.(c) $2 \mathrm{t}_{\mathrm{s}}=\mathrm{t}_{\mathrm{r}}$
or, $2 \sqrt{\frac{2 l}{g \sin \theta}}=\sqrt{\frac{2 l}{g \sin \theta-\mu g \cos \theta}}$
or, $\frac{4}{\sin \theta}=\frac{1}{\sin \theta-\mu \cos \theta}$
or, $4 \sin \theta-4 \mu \cos \theta=\sin \theta$
or, $4 \mu \cos \theta=3 \sin \theta$
or, $\mu=\frac{3}{4} \tan \theta=0.75$
63.(a) Change in $\mathrm{wt}=$ change in upthrust
or, $\quad 200=\left(l^{2} \times 2\right) \times 1$
or, $l=10 \mathrm{~cm}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-05-26 Hints \& Solution

64.(c) Gain in time in day $=\frac{1}{2} \propto 4 \theta \times 1$ day
or, $\quad \alpha=\frac{8.6 \times 2}{10 \times 86400}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
65.(c)
$\mathrm{Q}=\frac{\mathrm{kAd} \theta}{2 l} \times \mathrm{t}_{1}=\frac{\mathrm{k} 2 \mathrm{Ad} \theta}{l} \times \mathrm{t}_{2}$
or, $\frac{t_{1}}{2}=2 t_{2}$
or, $\mathrm{t}_{2}=\frac{12}{4}=35$
66.(b)
$\rho_{\mathrm{m}}=\frac{4 \mathrm{~V} \rho_{\mathrm{H}}+\mathrm{V} \rho_{0}}{4 \mathrm{~V}+\mathrm{V}}=\frac{4 \rho_{\mathrm{H}}+\rho_{0}}{5}$
$\therefore \quad \frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{v}_{\mathrm{H}}}=\sqrt{\frac{\rho_{\mathrm{H}}}{\rho_{\mathrm{m}}}}=\sqrt{\frac{\rho_{\mathrm{H}}}{4 \rho_{\mathrm{H}}}}=\frac{1}{2}$
$\therefore \quad \mathrm{v}_{\mathrm{m}}=\frac{1224}{2}=612 \mathrm{~m} / \mathrm{s}$
67.(a)
$\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}-\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} 3 \mathrm{R}}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}\left(1-\frac{1}{3}\right)$
$\therefore \quad \frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}=\frac{3}{2} \mathrm{~V}$
Again, $\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}(3 \mathrm{R})^{2}}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}} \times \frac{1}{9 \mathrm{R}}$

$$
\begin{aligned}
& =\frac{3 V}{2} \times \frac{1}{9 R} \\
& =\frac{V}{6 R}
\end{aligned}
$$

68.(a) Resistance in GHF is open so
$\mathrm{R}_{\mathrm{eq}}=\frac{4 \times 2}{4+2}+2=\frac{4}{3}+2=\frac{10}{3} \Omega$
$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{eq}}}=\frac{10}{\frac{10}{3}}=3 \mathrm{~A}$
Here current 1 A flows along BGD \& 2A along AD so voltage across capacitor $=\mathrm{Pd}$ across GP
$=\mathrm{V}_{\mathrm{GD}}+\mathrm{V}_{\mathrm{DF}}=1 \times 2+3 \times 2=8 \mathrm{~V}$
69.(c) $B=\frac{\mu . I}{2 R}=\frac{\mu_{0} f}{2 R}$
or, $\quad 6.28=\frac{4 \pi \times 10^{-7} \times 2 \times 10 \times 6.25 \times 10^{12}}{2 \mathrm{R}}$
or, $\mathrm{R}=\frac{4 \pi \times 10^{-7} \times 2 \times 10^{-6} \times 6.25 \times 10^{12}}{2 \times 6.28}$

$$
=1.25 \mathrm{~m}
$$

70.(b) $\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$

$$
=\frac{10}{\sqrt{10^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{c}}\right)^{2}}}=\frac{10}{10 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

$=\tan 45^{\circ}$
$\phi=45^{\circ}=\frac{\pi}{4}$
71.(b)
$\mathrm{I}=\mathrm{I}^{\prime}+2 \sqrt{\mathrm{I}^{\prime} \mathrm{I}} \cos \phi+\mathrm{I}^{\prime}$
if path difference is λ then phase difference is
2π so $I=4 I^{\prime} \Rightarrow I^{\prime}=\frac{I}{4}$
If path difference is $\frac{\lambda}{4}$ then phase difference (ϕ^{\prime})
$=\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2}$
$\mathrm{I}_{\mathrm{R}}=\mathrm{I}^{\prime}+2 \sqrt{\mathrm{I}^{\prime} \mathrm{I}^{\prime}} \cos \phi^{\prime}+\mathrm{I}^{\prime}$

$$
=2 \mathrm{I}^{\prime}=2 \times \frac{\mathrm{I}}{4}=\frac{\mathrm{I}}{2}
$$

72.(a)

or, $R=h \frac{\operatorname{sinc}}{\operatorname{cosc}}$

$$
\begin{aligned}
& =\mathrm{h} \frac{\operatorname{sinc}}{\sqrt{1-\sin ^{2} \mathrm{c}}} \\
& =\mathrm{h} \frac{\operatorname{sinc}}{\sqrt{1-\sin ^{2} \mathrm{c}}} \\
& =\mathrm{h} \times \frac{1}{\mu} \frac{1}{\sqrt{1-\frac{1}{\mu^{2}}}}=\frac{\mathrm{h}}{\sqrt{\mu^{2}-1}} \\
& =\frac{4}{\sqrt{(\sqrt[5]{3})^{2}}-1}=4 \times \frac{3}{4} \\
& =3 \mathrm{~m}
\end{aligned}
$$

73.(c) $1^{\text {st }}$ case
$\frac{\mathrm{hc}}{\lambda}=\phi+3 \mathrm{ev}_{0} \ldots$ (i)
$2^{\text {nd }}$ case
$\frac{\mathrm{hc}}{2 \lambda}=\phi+\mathrm{ev}_{0} \ldots$. (ii)
From (i) \& (ii)

$$
\frac{1}{2}\left(\phi+3 \mathrm{ev}_{0}\right)=\phi+\mathrm{ev}_{0}
$$

or, $\quad \phi+3 \mathrm{ev}_{0}=2 \phi-2 \mathrm{ev}_{0}$
or, $\phi=\mathrm{ev}_{0} \ldots$. (iii)
From equation (i)

$$
\frac{\mathrm{hc}}{\lambda}=\phi+3 \phi
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187
2078-05-26 Hints \& Solution
or, $\quad 4 \phi=\frac{\mathrm{hc}}{\lambda}$
or, $4 \frac{\mathrm{hc}}{\lambda_{0}}=\frac{\mathrm{hc}}{\lambda}$
or, $\lambda=4 \lambda$
74.(d) $\frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{N}_{\mathrm{B}}}=\frac{1}{\mathrm{e}}$
or, $\quad \frac{\mathrm{N}_{0} \mathrm{e}^{-10 \lambda \mathrm{t}}}{\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}}=\frac{1}{\mathrm{e}}$
or, $\frac{1}{\mathrm{e}^{9 \lambda \mathrm{t}}}=\frac{1}{\mathrm{e}}$
or, $\left(\frac{1}{\mathrm{e}}\right)^{9 \lambda \mathrm{t}}=\frac{1}{\mathrm{e}}$
or, $\quad 9 \lambda t=1$
or, $\quad t=\frac{1}{9 \lambda}$
75.(c) $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{O}$ red orange lemon yellow
76.(d) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+[\mathrm{O}]$

Colour vegetable $+[\mathrm{O}] \rightarrow$ Colourless vegetable 77.(c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} \xrightarrow{\mathrm{KOH} \text { (alc.) }} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{NaNH}_{2} / \mathrm{NH}_{3}} \xrightarrow{\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}}$
78.(b) $\frac{\text { Wt. of metal }}{\text { EW of metal }}=\frac{\text { Wt. of oxygen }}{\text { EW of oxygen }}$
$\frac{2}{\mathrm{x}}=\frac{0.8}{8}, \mathrm{x}=20$
valency of metal $=2$
At. wt. $=\mathrm{EW} \times$ valency
$=20 \times 2=40$
79.(d) At. no. $=19=19 \mathrm{e} \& 19 \mathrm{P}$

No. of $n=39-19=20 n$
80.(a) 1 L of $\frac{\mathrm{N}}{2} \mathrm{HCl}$ contains 18.25 g of HCl

Remaining $\mathrm{HCl}=18.25-16.425=1.825$
$\frac{\mathrm{W}}{\mathrm{E}}=\frac{\mathrm{N} \times \mathrm{V}_{\mathrm{m}}}{1000}$
$\frac{1.825}{36.5}=\frac{\mathrm{N} \times 500}{1000}, \mathrm{~N}=0.1 \mathrm{~N} \mathrm{HCl}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
=-\log [0.1]
$$

$=1$
81.(a) $\begin{array}{cc}\mathrm{CaC}_{2} \mathrm{O}_{4} & \rightleftharpoons \mathrm{Ca}^{++}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{--} \\ \mathrm{S} & \mathrm{S}\end{array}$
82. (a) $f(x)=\frac{\cos ^{2} x+\sin ^{4} x}{\sin ^{2} x+\cos ^{4} x}=\frac{\cos ^{2} x+\sin ^{2} x\left(1-\cos ^{2} x\right)}{\sin ^{2} x+\cos ^{2} x\left(1-\sin ^{2} x\right)}$

$$
\begin{aligned}
& =\frac{\cos ^{2} x+\sin ^{2} x-\sin ^{2} x \cos ^{2} x}{\sin ^{2} x+\cos ^{2} x-\sin ^{2} x \cos ^{2} x} \\
& =\frac{1-\sin ^{2} x \cos ^{2} x}{1-\sin ^{2} x \cos x}=1
\end{aligned}
$$

83.(c) Here $\alpha+\beta=\frac{5}{6}, \alpha \beta=\frac{1}{6}$

So $\tan ^{-1} \alpha+\tan ^{-1} \beta=\tan ^{-1} \frac{\alpha+\beta}{1-\alpha \beta}=\tan ^{-1} \frac{\frac{5}{6}}{1-\frac{5}{6}}$

$$
=\tan ^{-1} 1=\frac{\pi}{4}
$$

84.(a) Projection of \vec{b} on $\vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{2.5+1 .-3+2.1}{\sqrt{2^{2}+1^{2}+2^{2}}}$

$$
=\frac{10-3+2}{\sqrt{9}}=\frac{9}{3}=3
$$

85.(a) No. of arrangements of CALCLTTA $=\frac{8!}{2!2!2!}$

$$
=5040
$$

No. of arrangements of AMERICA $=\frac{7!}{2!}=2520$
So ratio of arrangements $=5040: 2520=2: 1$
86.(c) We have, $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{n} x^{n}$

Putting $x=2$, we get $(1+2)^{n}=c_{0}+2 . c_{1}+2^{2} . c_{2}$ $+2^{3} \cdot c_{3}+\ldots+2^{n} c_{n}$
i.e. $\quad c_{0}+2 c_{1}+2^{2} . c_{2}+2^{3} . c_{3}+\ldots+2^{n} . c_{n}=3^{n}$
87.(d) $\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots$
$=\frac{1}{4}\left[\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{15}\right)+\ldots\right]$
$=\frac{1}{4} \cdot \frac{1}{3}=\frac{1}{12}$
88.(b) Given $\left(\frac{1+i}{1-i}\right)^{m}=1$
i.e. $\left(\frac{1+\mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}}\right)^{\mathrm{m}}=1$
i.e. $\left(\frac{1+2 i-1}{1+1}\right)^{m}=1$
i.e. $\quad i^{m}=1 \Rightarrow m=4$
89.(b) The condition for one slope equals n times the other is

$$
4 \mathrm{nh}^{2}=\mathrm{ab}(1+\mathrm{n})^{2}
$$

Put $x=5,4.5 . h^{2}=a b .(1+5)^{2}$
i.e. $\quad 20 h^{2}=36 \mathrm{ab}$
i.e. $\quad 5 h^{2}=9 a b$
90.(a) Here vertex $=(a, 0)$
i.e. $\quad h=a, K=0$

Focus $=\left(a^{\prime}, 0\right)(b+\alpha, K)=\left(a^{\prime}, 0\right)$
i.e. $\quad \alpha=a^{\prime}-a$

So the equation of parabola is

$$
(y-K)^{2}=4 \alpha(x-h)
$$

i.e. $\quad y^{2}=4\left(a^{\prime}-a\right)(x-a)$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-05-26 Hints \& Solution

91.(b) The equation of plane passing through the intersection of two planes is
$2 \mathrm{x}+3 \mathrm{y}+10 \mathrm{z}-8+\lambda(2 \mathrm{x}-3 \mathrm{y}+7 \mathrm{z}-2)=0$
which is perpendicular to $3 x-2 y+4 z=5$, so (2
$+2 \lambda) \cdot 3+(3-3 \lambda) \cdot-2+(10+7 \lambda) \cdot 4=0$
i.e. $\quad 6+6 \lambda-6+6 \lambda+40+28 \lambda=0$
i.e. $\lambda=-1$

So the required equation is $2 \mathrm{x}+3 \mathrm{y}+10 \mathrm{z}-8-$
$2 x+3 y-7 z+2=0$
i.e. $6 y+3 z-6=0$
i.e. $2 x+z=2$
92.(b) For continuity, $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=K$
i.e. $\quad \lim _{x \rightarrow 0} \frac{\sin x}{2 x}=K \Rightarrow K=\frac{1}{2}$
93.(d) Here, $y=x^{x^{x}}$
i.e. $y=x^{y}$
$\ln y=y \ln x \quad$ i.e. $\ln y-y \ln x=0$
$\therefore \quad \frac{d y}{d x}=-\frac{-\frac{y}{x}}{\frac{1}{y}-\ln x}=\frac{y^{2}}{x(1-y \ln x)}$

$$
=\frac{y^{2}}{x(1-\ln y)}
$$

94.(d) Here, $\mathrm{a}=4, \mathrm{~b}=9, \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}$

So, $\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})=(\mathrm{b}-\mathrm{a}) \mathrm{f}^{\prime}(\mathrm{c}) \Rightarrow 3-2=(9-4) \frac{1}{2}$
$\sqrt{c} \Rightarrow \sqrt{c}=2.5 \quad \therefore c=6.25$
95.(c) Here $\mathrm{I}=\int \frac{\mathrm{x}^{5} \mathrm{dx}}{\sqrt{1+\mathrm{x}^{3}}}=\int \frac{\mathrm{x}^{3} \cdot \mathrm{x}^{2} \mathrm{dx}}{\sqrt{1+\mathrm{x}^{3}}}$

Put $y=14 x^{3}$
$\therefore \quad \frac{d u}{3}=\mathrm{x}^{2} \mathrm{dx}$
Then $I=\int \frac{(y-1) \frac{d u}{3}}{\sqrt{y}}=\frac{1}{3} \int\left[\sqrt{y}-\frac{1}{\sqrt{y}}\right] d y$

$$
=\frac{1}{3}\left[\frac{\mathrm{y}^{3 / 2}}{\frac{3}{2}}-\frac{\mathrm{y}^{1 / 2}}{\frac{1}{2}}\right]
$$

$$
=\frac{2}{9}\left(1+x^{3}\right)^{3 / 2}-\frac{2}{3}\left(1+\mathrm{x}^{3}\right)^{1 / 2}+\mathrm{c}
$$

96.(a) Given curve is $y=a \sqrt{x}+b x$.

It passes through the point (1,2), so $\mathrm{a}+\mathrm{b}=2 \ldots$ (i)
Clearly the curve passes through origin. Also, area between the curve, line $x=4$ and x-axis $=8$
sq. units.
So $\int_{0}^{4}(a \sqrt{x}+b x) d x=8$
$\left.\therefore \quad \frac{2}{3} a x^{3 / 2}+\frac{b}{2} \mathrm{x}^{2}\right]_{0}^{4}=8$

$$
\begin{equation*}
\frac{2}{3} \mathrm{a} .8+\frac{\mathrm{b}}{2} \cdot 16=8 \tag{ii}
\end{equation*}
$$

i.e. $\quad 2 a+3 b=3$

Solving (i) and (ii) we get $\mathrm{a}=3, \mathrm{~b}=-1$
97.(c)

$$
\text { 98.(c) } \quad 99 .(\mathrm{c}) \quad 100 .(\mathrm{a})
$$

...The End...

