PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-10-01 Hints & Solution					
	Section – I		or, 2r = 6		
1.(a)	$ma = v \frac{dm}{dt}$	14.(d)	or, $r = 3\Omega$ In magnetic field no force act tangle is 0° & in electric field force act opposite to field i.e.		
	or, $a = \frac{v}{m} \frac{dm}{dt} = \frac{1000 \times 100}{1000} = 100 \text{ m/s}^2$	15.(b)	retard. $M = m \times 2L$		
2.(a)	$\vec{\mathbf{v}}_{rc} = \vec{\mathbf{v}}_{r} - \vec{\mathbf{v}}_{c}$ $= \vec{\mathbf{v}}_{r} + (-\vec{\mathbf{v}}_{c})$		or, $m = \frac{M}{2L}$		
3.(d)	$\frac{2}{5} \mathrm{mR}^2 = \mathrm{mK}^2$		After bending $M' = m \times AB = \frac{M}{2L} \times L = \frac{M}{2}$		
	$\therefore \mathbf{K} = \sqrt{\frac{2}{5}} \mathbf{R}$	16.(b)	$2d\sin 45^\circ = 2\lambda$		
4.(c)	Loss in wt = upthrust or, $w - \frac{W}{2} = v\sigma_w$		or, $d = \frac{\lambda}{\sin 45^\circ} = \sqrt{2} \lambda$		
	or, $v = \frac{W}{2}$	17.(b)	$\beta = 40 = \frac{I_c}{I_b}$ or, $40 = \frac{I_c - I_b}{I_b}$		
	$\therefore \text{Density} = \frac{W}{V} = \frac{W}{W} \times 2 = 2 \text{ g/cc}$		or, 40 $I_b = I_e - I_b$		
5.(c)	$\frac{1.004P}{P} = \frac{T+1}{T}$	18.(a)	or, $I_b = \frac{I_e}{41} = \frac{8.2}{41} = 0.2 \text{ mA}$		
	or, $1.004 \text{ T} = \text{T} + 1$ or, $\text{T} = \frac{1}{0.004} = 250 \text{ K}$	19.(b) 20.(a)			
6.(d)	$\frac{\Delta l}{l} = \alpha \Delta \theta$	21.(c) 22.(a) 23.(b)			
	or, $\Delta \theta = \frac{1}{100 \times 2 \times 10^{-5}}$	25.(b) 24.(d) 25.(b) 26.(b)			
7.(a)	$=\frac{10^3}{2}=500^{\circ}\mathrm{C}$	27.(b) 28.(b)			
8.(a)	$\mathbf{v} = \frac{\mathbf{f}\mathbf{u}}{\mathbf{u} - \mathbf{f}} \& \mathbf{m} = \frac{\mathbf{f}}{\mathbf{u} - \mathbf{f}}$	29.(b) 30.(c)	·		
9.(a)	u is -ve & u < f so v is +ve & m > 1 $L = 10\log \frac{I}{I_0} = 10\log \frac{5 \times 10^{-7}}{10^{-12}} = 56.9 \text{ db}$	31.(b) 32.(a) 33.(c)			
10.(b)		34.(d)	$\int \cos y dy = \sin y + c = x + c \text{ if } y = \sin^{-1} x$		
11.(a)	$c = \frac{\varepsilon A}{d}$, c decreases if d increases	35.(d)	$\vec{a} \times \vec{b}$ is vector perpendicular to both a and \vec{b}		
12.(c)	$V = \frac{Q}{4\pi\epsilon_0 r}, V \propto \frac{1}{r}$		L' Hospital Rule = $\lim_{x \to 0} \frac{ae^{ax} + be^{-bx}}{\cos x} = a + b$		
13.(b)	$\frac{2E}{R+2r} = \frac{E}{R+\frac{r}{2}}$		$y = 2 \log_e x \implies \frac{dy}{dx} = \frac{2}{x}$		
	2	38.(b) 39.(a)	e ^x only obeys the statement.		
	or, $\frac{2}{3+2r} = \frac{1}{3+\frac{r}{2}}$	40.(b) 41.(a)			
	or, $\frac{2}{3+2r} = \frac{2}{6+r}$	42.(d) 43.(a)			
	or, $3+2r = 6+r$ or, $12+2r = 6+4r$	13.(a)			

PEA Association Pyt Ltd Thanathali Kathmandu Tel: 4245730 4257187

	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-10-01 Hints & Solution			
44.(c)	$\vec{a} + \vec{b} = \vec{c}$	or, $\frac{40}{100} = 1 - \frac{T_2}{800}$		
	$(\vec{a} + \vec{b})^2 = -\vec{c}^2$	100 800		
	$\therefore \vec{a}^2 + 2\vec{a}.\vec{b} + \vec{b}^2 = \vec{c}^2$	or, $\frac{T_2}{800} = 1 - \frac{2}{5}$		
	i.e. $9 + 2 \times 3 \times 5 \cos\theta + 25 = 49$	or, $T_2 = \frac{3}{5} \times 800 = 480 \text{ K}$		
	or, $30 \cos \theta = 15$	2 nd case		
	$\theta = \frac{\pi}{3}$			
45.(d)	It is true whereas the others are not	$\eta_2 = \left(1 - \frac{I_2}{T_1}\right) \times 100\%$		
46.(a) 47.(a)	It makes $0 = 0$, and identity.	or, $\frac{50}{100} = 1 - \frac{T_2'}{800}$		
48.(d)		or, $\frac{T_2'}{800} = \frac{1}{2}$		
49.(d)	50.(c) $51.(a)$ $52.(c)$ $53.(d)$ $54.(a)$	800 2		
55.(b)	56.(b) 57.(a) 58.(d) 59.(b) 60.(a)	or, $T_2' = 400 K$ $\therefore \Delta T = T_2 - T_2' = 480 K - 400 K = 80 K$		
	Section – II	$\begin{array}{cccc} & & & & & & & \\ \hline & & & & & \\ 66.(d) & & & & & \\ \hline & & & & & \\ \mathbf{For \ glass} \end{array}$		
61.(b)	For vertical motion	$R_1 = 5 \text{ cm}$ $R_2 = -10 \text{ cm}$		
	$y = u_y t - \frac{1}{2} g t^2$	$\frac{1}{fg} = (\mu_g - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$		
	or, $20.4 = u_v \times 2.5 - \frac{1}{2} \times 10(2.5)^2$			
	or, $u_v = 20.7 \text{ m/s}$	$=(1.5-1)\left(\frac{1}{5}-\frac{1}{10}\right)$		
	Here $u = \sqrt{u_x^2 + u_y^2}$	$=\frac{0.5}{10}=\frac{1}{20}$		
	or, $u_x = \sqrt{u^2 - u_y^2} = \sqrt{40^2 - 20.7^2} = 34.2 \text{ m/s}$	or, $fg = 20 \text{ cm}$		
	$\therefore R = \frac{2u_x u_y}{g} = \frac{2 \times 34.2 \times 20.7}{10}$	For water		
	g = 141.5 m	$R_1 = \infty, R_2 = 10cm$		
62 (b)	$a = \frac{0^2 - 100^2}{2 \times 4} = \frac{0^2 - u^2}{2 \times 9}$	$\frac{1}{f_{w}} = (\mu_{w} - 1) \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$		
02.(0)		w (1 2)		
	or, $\frac{100^2}{4} = \frac{u^2}{9}$	$=\left(\frac{4}{3}-1\right)\frac{1}{10}=\frac{1}{30}$		
	or, $u = \sqrt{\frac{9}{4} \times 100^2} = 150 \text{ m/s}$	\therefore f _w = 30 cm		
(2, (1))		$\therefore \frac{1}{F} = \frac{1}{f_c} + \frac{1}{f_w} = \frac{1}{20} + \frac{1}{30}$		
63.(d)	Loss in wt = upthrust (80 + 12.4) - 20.5 = ($V_m + V_w$) σ_w	or, $F = \frac{20 \times 30}{20 + 30} = \frac{600}{50} = 12 \text{ cm}$		
	or, $71.9 = V + \frac{12.4}{0.9}$ or, $V = 58.1$ cc			
	00	67.(c) $3.5\beta = 3.5 \times 10^{-3}$		
	:. $\rho = \frac{m}{V} = \frac{80}{58.1} = 1.37 \text{ g/cc}$	or, $\frac{D\lambda}{d} = 10^{-3}$		
64 (c)	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	or, $\lambda = \frac{10^{-3} \times 10^{-3}}{2.5}$		
01.(0)		$= 4 \times 10^{-7} \mathrm{m}$		
	or, $\frac{(P_a + P_w) \times 1}{285} = \frac{P_a V_2}{308}$	$=400 \times 10^{-9} \text{ m}$		
	or, $V_2 = \left(\frac{(1.01 \times 10^5 + 10^3 \times 10 \times 40) \ 308}{285 \times 1.01 \times 10^5}\right)$	=400 nm		
		68.(b) PE = $9 \times 10^9 \frac{Q_1 Q_2}{r}$		
65.(c)	= 5.3 cc 1 st case	$=\frac{9\times10^9\times2\times10^{-5}\times2\times10^{-5}}{0.1}$		
- (-)	$\eta_1 = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$	0.1 = 36 J		
		- 50 5		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-10-01 Hints & Solution

69.(d) R₅₀ = 5
$$\Omega$$
, R₁₀₀ = 6 Ω
 $\alpha = \frac{R_{100} - R_{50}}{R_{50}(100 - 50)}$
 $= \frac{6 - 5}{5 \times 50} = 4 \times 10^{-3/2} \text{C}$
Again R₀ = R₅₀ {1 + (0 - 50) \alpha}
 $= 5(1 - 5 \times 4 \times 10^{-3})$
 $= 4\Omega$
70.(a) F = $\frac{\mu_0}{2\pi} \frac{112}{2\pi}$
When direction is reversed then direction of
force also reversed as
F' = $-\frac{\mu_0}{2\pi} \frac{2112}{34} = -\frac{2F}{3}$
71.(c) $\tan \phi = \frac{X_L}{R} = \frac{\omega L}{R}$
or, $\phi = \tan^{-1}(\frac{2\pi \times 50 \times 0.24}{12}) = 80^{\circ}$
72.(d) 1st case
 $\frac{hc}{\lambda} = \phi + \frac{1}{2} mv^2$
or, $\frac{1}{2} mv^2 = \frac{hc}{\lambda} - \phi ...(1)$
2nd case
 $\frac{dhc}{3\lambda} = \phi + \frac{1}{2} mv^2$
or, $\frac{1}{2} mv^2 = \frac{4hc}{3\lambda} - \phi$
Or, $v' = v = \sqrt{\frac{\frac{4hc}{3\lambda} - \phi}{\frac{hc}{\lambda}}} = \frac{10g}{\lambda}$
Check taking numerical value of $\frac{hc}{\lambda} \& \phi$
73.(b) When $(\frac{2}{3})$ of sample decayed then
 $\frac{N}{N_0} = (\frac{1}{2})^{1/T_{1/2}}$
or, $\frac{1}{3} = (\frac{1}{2})^{1/T_{1/2}}$
or, $\frac{1}{3} = (\frac{1}{2})^{1/T_{1/2}}$

 $ln\left(\frac{1}{3}\right)$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-10-01 Hints & Solution

Given, $x + \frac{1}{x} = 2$ 84.(b) $X^2 + 1 = 2x$ This is only valid when x = 1i.e. $\sin^{-1}(1) = \frac{\pi}{2}$ 85.(d) 86.(c) If $f(x) = \int e^{x}(x-1) (x-2) dx$, then $f'(x) = e^x (x-1)(x-2)$ e^x is always positive So, f'(x) > 0 for x - 1 > 0 and x - 2 > 0So, f(x) is increasing on R - [1, 2]87.(b) The equation of the circle passing through (0,0), (1,0), (0,1) is $x^{2} + y^{2} - x - y = 0$ So, $k^{2} + 4k^{2} - k - 2k = 0$ $5k^{2} - 3k = 0$ $k = 0, \frac{3}{5}$ 88.(d) $\log_e \frac{1-x^3}{1-x} = \log_e(1-x^3) - \log_e(1-x)$ Coeff. of $x^9 = \text{coeff. of } (x^3)^3$ in the first – coeff of x^9 in the second $=-\frac{1}{3}-\left(-\frac{1}{9}\right)=-\frac{1}{3}+\frac{1}{9}=-\frac{2}{9}$ 89.(b) $T = S_1$ i.e. $x \times (-1) + y \times (2) - 9 = (-1)^2 + 2^2 - 9$ or, -x + 2y - 5 = 0or, x - 2y + 5 = 090.(a) If the point of contact is (x_1, y_1) , the equation of the tangent is $yy_1 = 2a(x + x_1)$ or, $y = \frac{2a}{y_1}x + \frac{2ax_1}{y_1}$ This must be identical with $y = mx + \frac{a}{m}$ or, $\frac{\underline{m}}{\underline{2a}} = \frac{\overline{m}}{\underline{2ax_1}}$ y₁ y₁ or, $\frac{my_1}{2a} = \frac{ay_1}{2amx_1}$ or, $x_1 = \frac{a}{m^2}$

91.(a)
$$2ae = 6 \Rightarrow ae = 3$$
. Also, $2b = 8 \Rightarrow b = 4$
So, $b^{2} = 16$
or, $a^{2}(1 - e^{2}) = 16$
or, $a^{2} - a^{2}e^{2} = 16$
or, $a^{2} = 16 + 9 = 25$
So, the ellipse is $\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1$
92.(a) Since f (x) is continuous at $x = 2$
 $\therefore f(2) = \lim_{x \to 2} \frac{x^{2} - (a + 2)x + a}{x - 2}$
 $2 = \lim_{x \to 2} \frac{x(x - 2) - a(x - 1)}{x - 2}$
Which is true if $a = 0$
93.(c) We know, $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$
 $\therefore y = e^{x}$
 $\frac{dy}{dx} = ex = y$
94.(b) $y = \frac{x^{3}}{8a^{2}}$
We have, Slope of normal $= -\frac{1}{\frac{dy}{dx}} = -\frac{8a^{2}}{3x^{2}}$
Given, Slope of normal $= -\frac{2}{3}$
 $-\frac{8a^{2}}{3x^{2}} = -\frac{2}{3} \Rightarrow x^{2} = 4a^{2} \Rightarrow x = 2a$
 $[\therefore a > 0 \& x > 0]$
 $\therefore y = a$
 \therefore Required point is (2a, a)
 $5.(a) \int \frac{dx}{\sqrt{\frac{17}{4-}(x^{2}-2*x*\frac{3}{2}+\frac{3}{2})^{2}}}{e = \sin^{-1}\frac{2x-3}{\sqrt{17}} + c}$
 $= fog(x) + c$
96.(d)
97.(b) 98.(c) 99.(c) 100.(c)

...Best of Luck ...