PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

Section - I

1.(a) $\mathrm{ma}=\mathrm{v} \frac{\mathrm{dm}}{\mathrm{dt}}$
or, $\mathrm{a}=\frac{\mathrm{v}}{\mathrm{m}} \frac{\mathrm{dm}}{\mathrm{dt}}=\frac{1000 \times 100}{1000}=100 \mathrm{~m} / \mathrm{s}^{2}$
2.(a) $\quad \overrightarrow{v_{r c}}=\overrightarrow{v_{r}}-\overrightarrow{v_{c}}$

$$
=\vec{v}_{\mathrm{r}}+\left(-\overrightarrow{v_{c}}\right)
$$

3.(d) $\frac{2}{5} \mathrm{mR}^{2}=\mathrm{mK}^{2}$
$\therefore \quad K=\sqrt{\frac{2}{5}} R$
4.(c) Loss in wt $=$ upthrust
or, $w-\frac{w}{2}=v \sigma_{w}$
or, $v=\frac{w}{2}$
$\therefore \quad$ Density $=\frac{\mathrm{w}}{\mathrm{v}}=\frac{\mathrm{w}}{\mathrm{w}} \times 2=2 \mathrm{~g} / \mathrm{cc}$
5.(c) $\frac{1.004 \mathrm{P}}{\mathrm{P}}=\frac{\mathrm{T}+1}{\mathrm{~T}}$
or, $\quad 1.004 \mathrm{~T}=\mathrm{T}+1$
or, $\quad \mathrm{T}=\frac{1}{0.004}=250 \mathrm{~K}$
6.(d) $\frac{\Delta l}{l}=\alpha \Delta \theta$

$$
\text { or, } \begin{aligned}
\Delta \theta & =\frac{1}{100 \times 2 \times 10^{-5}} \\
& =\frac{10^{3}}{2}=500^{\circ} \mathrm{C}
\end{aligned}
$$

7.(a)
8.(a) $v=\frac{f u}{u-f} \& m=\frac{f}{u-f}$
u is $-v e \& u<f$ so v is $+v e \& m>1$
9.(a) $\mathrm{L}=10 \log \frac{\mathrm{I}}{\mathrm{I}_{0}}=10 \log \frac{5 \times 10^{-7}}{10^{-12}}=56.9 \mathrm{db}$
10.(b)
11.(a) $\mathrm{c}=\frac{\varepsilon \mathrm{A}}{\mathrm{d}}, \mathrm{c}$ decreases if d increases
12.(c) $\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}}, \mathrm{V} \propto \frac{1}{\mathrm{r}}$
13.(b) $\frac{2 \mathrm{E}}{\mathrm{R}+2 \mathrm{r}}=\frac{\mathrm{E}}{\mathrm{R}+\frac{\mathrm{r}}{2}}$
or, $\frac{2}{3+2 \mathrm{r}}=\frac{1}{3+\frac{\mathrm{r}}{2}}$
or, $\frac{2}{3+2 r}=\frac{2}{6+r}$
or, $12+2 r=6+4 r$
or, $2 r=6$
or, $r=3 \Omega$
14.(d) In magnetic field no force act tangle is $0^{\circ} \&$ in electric field force act opposite to field i.e. retard.
15.(b) $\mathrm{M}=\mathrm{m} \times 2 \mathrm{~L}$
or, $m=\frac{M}{2 L}$
After bending
$\mathrm{M}^{\prime}=\mathrm{m} \times \mathrm{AB}=\frac{\mathrm{M}}{2 \mathrm{~L}} \times \mathrm{L}=\frac{\mathrm{M}}{2}$
16.(b) $2 \mathrm{~d} \sin 45^{\circ}=2 \lambda$
or, $d=\frac{\lambda}{\sin 45^{\circ}}=\sqrt{2} \lambda$
17.(b)
$\beta=40=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}$
or, $40=\frac{\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{b}}}{\mathrm{I}_{\mathrm{b}}}$
or, $40 \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{b}}$
or, $\mathrm{I}_{\mathrm{b}}=\frac{\mathrm{I}_{\mathrm{e}}}{41}=\frac{8.2}{41}=0.2 \mathrm{~mA}$
18.(a)
19.(b)
20.(a)
21.(c)
22.(a)
23.(b)
24.(d)
25.(b)
26.(b)
27.(b)
28.(b)
29.(b)
30.(c)
31.(b)
32.(a)
33.(c)
34.(d) \int cosy $d y=\sin y+c=x+c$ if $y=\sin ^{-1} x$
35.(d) $\vec{a} \times \vec{b}$ is vector perpendicular to both a and \vec{b}.
36.(b) L'Hospital Rule $=\lim _{x \rightarrow 0} \frac{\mathrm{ae}^{a \mathrm{x}}+\mathrm{be}^{-\mathrm{bx}}}{\cos \mathrm{x}}=\mathrm{a}+\mathrm{b}$
37.(c) $y=2 \log _{\mathrm{e}} \mathrm{x} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{x}}$
38.(b) e^{x} only obeys the statement.
39.(a)
40.(b)
41.(a)
42.(d)
43.(a)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187
44.(c) $\vec{a}+\vec{b}=\vec{c}$
$(\vec{a}+\vec{b})^{2}=-\vec{c}^{2}$
$\therefore \quad \overrightarrow{\mathrm{a}}^{2}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}}^{2}=\overrightarrow{\mathrm{c}}^{2}$
i.e. $9+2 \times 3 \times 5 \cos \theta+25=49$
or, $30 \cos \theta=15$
$\theta=\frac{\pi}{3}$
45.(d) It is true whereas the others are not
46.(a) It makes $0=0$, and identity.
47.(a)
48.(d)
$\begin{array}{llllll}\text { 49.(d) } & 50 .(\mathrm{c}) & 51 .(\mathrm{a}) & 52 .(\mathrm{c}) & 53 .(\mathrm{d}) & 54 .(\mathrm{a}) \\ 55 .(\mathrm{b}) & 56 .(\mathrm{b}) & 57 .(\mathrm{a}) & 58 .(\mathrm{d}) & 59 .(\mathrm{b}) & 60 .(\mathrm{a})\end{array}$

Section - II

61.(b) For vertical motion
$y=u_{y} t-\frac{1}{2} g t^{2}$
or, $\quad 20.4=u_{y} \times 2.5-\frac{1}{2} \times 10(2.5)^{2}$
or, $u_{y}=20.7 \mathrm{~m} / \mathrm{s}$
Here $u=\sqrt{u_{x}^{2}+u_{y}^{2}}$
or, $\mathrm{u}_{\mathrm{x}}=\sqrt{\mathrm{u}^{2}-\mathrm{u}_{\mathrm{y}}^{2}}=\sqrt{40^{2}-20.7^{2}}=34.2 \mathrm{~m} / \mathrm{s}$
$\therefore \quad \mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \times 34.2 \times 20.7}{10}$
62.(b) $\mathrm{a}=\frac{0^{2}-100^{2}}{2 \times 4}=\frac{0^{2}-\mathrm{u}^{2}}{2 \times 9}$
or, $\frac{100^{2}}{4}=\frac{u^{2}}{9}$
or, $u=\sqrt{\frac{9}{4} \times 100^{2}}=150 \mathrm{~m} / \mathrm{s}$
63.(d) Loss in wt $=$ upthrust
$(80+12.4)-20.5=\left(\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{w}}\right) \sigma_{\mathrm{w}}$
or, $\quad 71.9=\mathrm{V}+\frac{12.4}{0.9}$ or, $\mathrm{V}=58.1 \mathrm{cc}$
$\therefore \quad \rho=\frac{\mathrm{m}}{\mathrm{V}}=\frac{80}{58.1}=1.37 \mathrm{~g} / \mathrm{cc}$
64.(c) $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
or, $\frac{\left(\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{w}}\right) \times 1}{285}=\frac{\mathrm{P}_{\mathrm{a}} \mathrm{V}_{2}}{308}$
or, $\quad V_{2}=\left(\frac{\left(1.01 \times 10^{5}+10^{3} \times 10 \times 40\right) 308}{285 \times 1.01 \times 10^{5}}\right)$

$$
=5.3 \mathrm{cc}
$$

65.(c) $1^{\text {st }}$ case

$$
\eta_{1}=\left(1-\frac{T_{2}}{T_{1}}\right) \times 100 \%
$$

or, $\frac{40}{100}=1-\frac{\mathrm{T}_{2}}{800}$
or, $\frac{\mathrm{T}_{2}}{800}=1-\frac{2}{5}$
or, $\mathrm{T}_{2}=\frac{3}{5} \times 800=480 \mathrm{~K}$
$2^{\text {nd }}$ case

$$
\eta_{2}=\left(1-\frac{T_{2}^{\prime}}{T_{1}}\right) \times 100 \%
$$

or, $\frac{50}{100}=1-\frac{\mathrm{T}_{2}{ }^{\prime}}{800}$
or, $\frac{\mathrm{T}_{2}{ }^{\prime}}{800}=\frac{1}{2}$
or, $\mathrm{T}_{2}{ }^{\prime}=400 \mathrm{~K}$
$\therefore \Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{2}{ }^{\prime}=480 \mathrm{~K}-400 \mathrm{~K}=80 \mathrm{~K}$
For glass
$\mathrm{R}_{1}=5 \mathrm{~cm} \quad \mathrm{R}_{2}=-10 \mathrm{~cm}$
$\frac{1}{\mathrm{fg}}=\left(\mu_{\mathrm{g}}-1\right)\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)$

$$
=(1.5-1)\left(\frac{1}{5}-\frac{1}{10}\right)
$$

$$
=\frac{0.5}{10}=\frac{1}{20}
$$

or, $f g=20 \mathrm{~cm}$

For water

$\mathrm{R}_{1}=\infty, \mathrm{R}_{2}=10 \mathrm{~cm}$
$\frac{1}{\mathrm{f}_{\mathrm{w}}}=\left(\mu_{\mathrm{w}}-1\right)\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)$

$$
=\left(\frac{4}{3}-1\right) \frac{1}{10}=\frac{1}{30}
$$

$\therefore \quad \mathrm{f}_{\mathrm{w}}=30 \mathrm{~cm}$
$\therefore \quad \frac{1}{\mathrm{~F}}=\frac{1}{\mathrm{f}_{\mathrm{g}}}+\frac{1}{\mathrm{f}_{\mathrm{w}}}=\frac{1}{20}+\frac{1}{30}$
or, $\mathrm{F}=\frac{20 \times 30}{20+30}=\frac{600}{50}=12 \mathrm{~cm}$
67.(c) $3.5 \beta=3.5 \times 10^{-3}$
or, $\frac{D \lambda}{d}=10^{-3}$
or, $\lambda=\frac{10^{-3} \times 10^{-3}}{2.5}$

$$
\begin{aligned}
& =4 \times 10^{-7} \mathrm{~m} \\
& =400 \times 10^{-9} \mathrm{~m} \\
& =400 \mathrm{~nm}
\end{aligned}
$$

68.(b) $\mathrm{PE}=9 \times 10^{9} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}}$

$$
=\frac{9 \times 10^{9} \times 2 \times 10^{-5} \times 2 \times 10^{-5}}{0.1}
$$

$$
=36 \mathrm{~J}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

69.(d) $\mathrm{R}_{50}=5 \Omega, \mathrm{R}_{100}=6 \Omega$
$\alpha=\frac{\mathrm{R}_{100}-\mathrm{R}_{50}}{\mathrm{R}_{50}(100-50)}$

$$
=\frac{6-5}{5 \times 50}=4 \times 10^{-3} /{ }^{\circ} \mathrm{C}
$$

Again $\mathrm{R}_{0}=\mathrm{R}_{50}\{1+(0-50) \alpha\}$

$$
\begin{aligned}
& =5\left(1-5 \times 4 \times 10^{-3}\right) \\
& =4 \Omega
\end{aligned}
$$

70.(a) $\mathrm{F}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}_{1} \mathrm{I}_{2}}{\mathrm{~d}}$

When direction is reversed then direction of force also reversed as
$\mathrm{F}^{\prime}=-\frac{\mu_{0}}{2 \pi} \frac{2 \mathrm{I}_{\mathrm{I}_{2}}}{3 \mathrm{~d}}=-\frac{2 \mathrm{~F}}{3}$
71.(c) $\tan \phi=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\frac{\omega \mathrm{L}}{\mathrm{R}}$

$$
\text { or, } \begin{aligned}
\phi & =\tan ^{-1}\left(\frac{2 \pi \mathrm{fL}}{\mathrm{R}}\right) \\
& =\tan ^{-1}\left(\frac{2 \pi \times 50 \times 0.21}{12}\right)=80^{\circ}
\end{aligned}
$$

72.(d) $1^{\text {st }}$ case

$$
\begin{gathered}
\frac{\mathrm{hc}}{\lambda}=\phi+\frac{1}{2} m v^{2} \\
\text { or, } \frac{1}{2} m v^{2}=\frac{\mathrm{hc}}{\lambda}-\phi \ldots .(1)
\end{gathered}
$$

$2^{\text {nd }}$ case
$4 \frac{\mathrm{hc}}{3 \lambda}=\phi+\frac{1}{2} \mathrm{mv}^{\prime 2}$
or, $\frac{1}{2} \mathrm{mv}^{12}=\frac{4 \mathrm{hc}}{3 \lambda}-\phi$
Diving, $\frac{v^{\prime}}{v}=\sqrt{\frac{\frac{4 h c}{3 \lambda}-\phi}{\frac{h c}{\lambda}-\phi}}$
or, $\quad v^{\prime}=v=\sqrt{\frac{\frac{4 h c}{3 \lambda}-\phi}{\frac{h c}{\lambda}-d}}$
Check taking numerical value of $\frac{\mathrm{hc}}{\lambda} \& \phi$
73.(b) When $\left(\frac{2}{3}\right)$ of sample decayed then

$$
\begin{array}{r}
\frac{\mathrm{N}}{\mathrm{~N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{t}_{1} / \mathrm{T}_{1 / 2}} \\
\text { or, } \frac{1}{3}=\left(\frac{1}{2}\right)^{\mathrm{t}_{1} / \mathrm{T}_{1 / 2}}
\end{array}
$$

or, $\frac{\mathrm{t}_{1}}{\mathrm{~T}_{1 / 2}}=\frac{\ln \left(\frac{1}{3}\right)}{\ln \left(\frac{1}{2}\right)}$

$$
\mathrm{t}_{1}=31.7 \mathrm{~min}
$$

$2^{\text {nd }}$ case when $\left(\frac{1}{3}\right)$ of sample decayed then

$$
\frac{\mathrm{N}}{\mathrm{~N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{t}_{2} / \mathrm{T}_{1 / 2}}
$$

or, $\frac{2}{3}=\left(\frac{1}{2}\right)^{\mathrm{t}_{2} / \mathrm{T}_{1 / 2}}$
or, $\mathrm{t}_{2}=11.7 \mathrm{~min}$
$\Delta t=t_{1}-t_{2}=31.7-11.7$

$$
=20 \mathrm{~min}
$$

74.(b) $2 \mathrm{f}_{0}{ }^{\mathrm{s}}=\mathrm{f}_{0}$
or, $2 \times \frac{1}{2 l_{\mathrm{s}}} \sqrt{\frac{\mathrm{T} l}{\mathrm{M}}}=\frac{\mathrm{v}}{4 l_{\mathrm{p}}}$
or, $\frac{1}{0.5} \sqrt{\frac{50 \times 0.5}{M}}=\frac{320}{4 \times 0.8}$
or, $\frac{25}{M}=50^{2}$
or, $\mathrm{M}=\frac{25}{50^{2}}=0.01 \mathrm{~kg}$

$$
=10 \mathrm{~g}
$$

75.(b)
76.(a)
77.(a)
78.(c)
79.(d)
80.(a)
81.(c)
82.(c)
83.(a)

Since $\sin \theta$ and $\cos \theta$ are the roots of the equation
$a x^{2}-b x+c=0$
$\therefore \quad \sin \theta+\cos \theta=\frac{b}{c}$
and $\sin \theta \cos \theta=\frac{c}{a}$
Now, $(\sin \theta+\cos \theta)^{2}=\frac{b^{2}}{a^{2}}$
$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=\frac{b^{2}}{a^{2}}$
$1+2 \frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}, \frac{\mathrm{a}+2 \mathrm{c}}{\mathrm{a}}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}$
$a+2 c=\frac{b^{2}}{a}, a^{2}+2 c a=b^{2}$
$\mathrm{a}^{2}-\mathrm{b}^{2}=-2 \mathrm{ca}$
$\mathrm{b}^{2}-\mathrm{a}^{2}=2 \mathrm{ac}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-10-01 Hints \& Solution

84.(b) Given, $x+\frac{1}{x}=2$
$\mathrm{X}^{2}+1=2 \mathrm{x}$
This is only valid when $x=1$
i.e. $\sin ^{-1}(1)=\frac{\pi}{2}$
85.(d)
86.(c) If $f(x)=\int e^{x}(x-1)(x-2) d x$, then
$f^{\prime}(x)=e^{x}(x-1)(x-2)$
e^{x} is always positive
So, $\mathrm{f}^{\prime}(\mathrm{x})>0$ for $\mathrm{x}-1>0$ and $\mathrm{x}-2>0$
So, $f(x)$ is increasing on $R-[1,2]$
87.(b) The equation of the circle passing through $(0,0)$, $(1,0),(0,1)$ is

$$
x^{2}+y^{2}-x-y=0
$$

So, $\mathrm{k}^{2}+4 \mathrm{k}^{2}-\mathrm{k}-2 \mathrm{k}=0$

$$
5 \mathrm{k}^{2}-3 \mathrm{k}=0
$$

$$
\mathrm{k}=0, \frac{3}{5}
$$

88.(d) $\quad \log _{e} \frac{1-x^{3}}{1-x}=\log _{e}\left(1-x^{3}\right)-\log _{e}(1-x)$

Coeff. of $x^{9}=$ coeff. of $\left(x^{3}\right)^{3}$ in the first - coeff of x^{9} in the second
$=-\frac{1}{3}-\left(-\frac{1}{9}\right)=-\frac{1}{3}+\frac{1}{9}=-\frac{2}{9}$
89.(b) $\mathrm{T}=\mathrm{S}_{1}$
i.e. $x \times(-1)+y \times(2)-9=(-1)^{2}+2^{2}-9$
or, $-x+2 y-5=0$
or, $x-2 y+5=0$
90.(a) If the point of contact is $\left(x_{1}, y_{1}\right)$, the equation of the tangent is
$\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
or, $\mathrm{y}=\frac{2 \mathrm{a}}{\mathrm{y}_{1}} \mathrm{x}+\frac{2 \mathrm{ax}_{1}}{\mathrm{y}_{1}}$
This must be identical with
$y=m x+\frac{a}{m}$
or, $\frac{\mathrm{m}}{\frac{2 \mathrm{a}}{\mathrm{y}_{1}}}=\frac{\frac{\mathrm{a}}{\mathrm{m}}}{\frac{2 \mathrm{ax}_{1}}{\mathrm{y}_{1}}}$
or, $\frac{\mathrm{my}_{1}}{2 \mathrm{a}}=\frac{\mathrm{ay}_{1}}{2 \mathrm{amx}_{1}}$
or, $\mathrm{x}_{1}=\frac{\mathrm{a}}{\mathrm{m}^{2}}$
91.(a) $2 \mathrm{ae}=6 \Rightarrow \mathrm{ae}=3$. Also, $2 \mathrm{~b}=8 \Rightarrow \mathrm{~b}=4$

So, $b^{2}=16$
or, $a^{2}\left(1-e^{2}\right)=16$
or, $\mathrm{a}^{2}-\mathrm{a}^{2} \mathrm{e}^{2}=16$
or, $a^{2}=16+9=25$
So, the ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
92.(a) Since $f(x)$ is continuous at $x=2$

$$
\begin{aligned}
\therefore & \mathrm{f}(2)=\lim _{\mathrm{x} \rightarrow 2} \mathrm{f}(\mathrm{x}) \\
& 2=\lim _{\mathrm{x} \rightarrow 2} \frac{\mathrm{x}^{2}-(\mathrm{a}+2) \mathrm{x}+\mathrm{a}}{\mathrm{x}-2} \\
& 2=\lim _{\mathrm{x} \rightarrow 2} \frac{\mathrm{x}(\mathrm{x}-2)-\mathrm{a}(\mathrm{x}-1)}{\mathrm{x}-2}
\end{aligned}
$$

Which is true if $\mathrm{a}=0$
93.(c) We know, $\mathrm{e}^{x}=1+x+\frac{\mathrm{x}^{2}}{2!}+\frac{\mathrm{x}^{3}}{3!}+\ldots \ldots$.
$\therefore \quad \mathrm{y}=\mathrm{e}^{x}$
$\frac{d y}{d x}=e x=y$
94.(b) $y=\frac{x^{3}}{8 a^{2}}$
$\frac{d y}{d x}=\frac{3 x^{2}}{8 a^{2}}$
We have, Slope of normal $=-\frac{1}{\frac{d y}{d x}}=-\frac{8 a^{2}}{3 x^{2}}$
Given, Slope of normal $=-\frac{2}{3}$

$$
-\frac{8 \mathrm{a}^{2}}{3 \mathrm{x}^{2}}=-\frac{2}{3} \Rightarrow \mathrm{x}^{2}=4 \mathrm{a}^{2} \Rightarrow \mathrm{x}=2 \mathrm{a}
$$

$$
[\therefore \mathrm{a}>0 \& \mathrm{x}>0]
$$

$\therefore \quad \mathrm{y}=\mathrm{a}$
$\therefore \quad$ Required point is $(2 a, a)$
95.(a) $\int \frac{d x}{\sqrt{\frac{17}{4}-\left(x^{2}-2 * x * \frac{3}{2}+\frac{3}{2}\right)^{2}}}$
$=\sin ^{-1} \frac{x-\frac{3}{2}}{\frac{\sqrt{17}}{2}}+\mathrm{c}$
$=\sin ^{-1} \frac{\frac{2 x-3}{2}}{\sqrt{17}}+c$
$=f \circ g(x)+c$
96.(d)
97.(b) 98.(c) 99.(c) 100.(c)

