PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2080-2-13 Hints & Solution					
	Section – I	1	0 6		
1.(d)	The time-period is independent of amplitude.	13.(a)	$\frac{\left(\frac{\mathbf{q}}{\mathbf{m}}\right)_{p}}{\left(\frac{\mathbf{q}}{\mathbf{m}}\right)} = \frac{\frac{\mathbf{q}}{\mathbf{m}_{p}}}{\frac{2\mathbf{e}}{4\mathbf{m}}} = 2:1$		
		1 <i>3</i> .(<i>a</i>)	$\left(\frac{q}{m}\right) = \frac{2e}{4m} = 2.1$		
2.(d)	$\frac{\text{K.E.}_{\text{trans}}}{\text{K.E.}_{\text{T}}} = \frac{1}{1 + \frac{K^2}{R^2}} = \frac{1}{1 + \frac{2}{5}} = \frac{5}{7}$	14.(b)	$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{2\mathbf{Q}}{\mathbf{r}^2}$		
3.(c)	$R = \frac{u^{2} \sin^{2} 90^{\circ}}{g} = \frac{u^{2}}{g} (:: \theta = 45^{\circ})$		$E' = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} = \frac{E}{2}$		
	$H_{max} = \frac{u^2 \sin 90^\circ}{2g} = \frac{u^2}{2g} = \frac{R}{2} (\because \theta = 90^\circ)$	15.(a)	Metals have positive temperature coefficient of resistance while semiconductors have negative		
4.(d)	Apparent weight (W') = Actual Weight (W) - Upthrust (U)	16.(b)	temperature coefficient of resistance. $E = \alpha \theta + \frac{1}{2}\beta \theta^2$		
	For flotation, $W = U$		-		
	\therefore W' = 0		$\therefore \frac{\mathrm{d}E}{\mathrm{d}\theta} _{\theta=\theta n}=0$		
5.(a)	$C_{\rm rms} = \sqrt{\frac{C_1^2 + C_2^2 + C_3^2 + C_4^2}{4}} = \sqrt{\frac{2^2 + 3^2 + 4^2 + 5^2}{4}}$		or, $\alpha + \beta \theta_n = 0$		
	$=\frac{\sqrt{54}}{2}$ cm/s		or, $\theta_n = -\frac{\alpha}{\beta}$		
	$\frac{C}{5} = \frac{F-32}{9}$	17.(c)	mg - $T_{max} = ma_{min}$		
6.(a)	$\overline{5} = \overline{9}$		or, mg - $\frac{3}{4}$ mg = ma _{min}		
	$\therefore \frac{1}{5}\Delta C = \frac{1}{9}\Delta F$		or, $\frac{1}{4}$ mg = ma _{min}		
	or, $\Delta C = \frac{5}{9} \Delta F$				
	, -		or, $a_{\min} = \frac{g}{4}$		
	If $\Delta F = 1^{\circ}F$, then $\Delta C = \frac{5}{9} {}^{\circ}C$	18.(a)	For 0.1 M HCl, $[H^+] = 10^{-1} \Rightarrow pH = 1$		
	$\therefore \text{ Coefficient of linear expansion} = \frac{\alpha}{\circ F} = \frac{\alpha}{\frac{5}{2} \circ C} = \frac{9\alpha}{5}$		\Rightarrow pOH = 13 \Rightarrow [OH ⁻] = 10 ⁻¹³ mol/dm ³		
	$^{\circ}F = \frac{5}{9} ^{\circ}C$	19.(b)	Lymann series:UV region		
7.(b)	Width of maxima (W) $\propto \lambda$		Balmer series: - Visible region		
/.(0)	As $\lambda_{\rm R} > \lambda_{\rm B}$, then $W_{\rm R} > W_{\rm B}$		Paschen and Brackett series:- IR region		
	—	20.(c)	Wt. in gm of solute		
8.(c)	$f = \frac{1}{ld} \sqrt{\frac{T}{\pi \rho}}$ i.e. $f \propto \frac{1}{d}$		$=\frac{\text{NxV}_{(\text{me})} \text{ x Eq.wt}}{1000} = \frac{0.1 \text{ x 1000}}{1000} \times \frac{294}{6}$		
	then $\frac{\mathbf{f}'}{\mathbf{f}} = \frac{\mathbf{d}}{\mathbf{d}'}$	21.(d)			
	, d	22.(a)	No. of gr. eq^v . of Oxygen = $8/8 = 1$		
	or, $f' = \frac{d}{3d} \times f$		So, No. of gr. eq^v .of metals to react = 1		
	or, $f' = \frac{f}{3}$		\therefore wt.of metal = gr. eqv. wt. = 31.75 g		
9.(c)	Electron is accelerated along field direction.	23.(d)	In group atomic size increases with increasing atomic number.		
10.(c)	E = kl	24.(b)	$\rm H_2O$ is liquid while $\rm H_2S$ is gas, because hydrogen bond in $\rm H_2O$		
	or, $l = \frac{E}{K} = \frac{2}{0.5} = 4m$	25.(b)	The bond order of O_2 , O_3 and H_2O_2 is :		
11.(a)			$O_2 > O_3 > H_2O_2$		
12.(d)	Photocurrent only depends upon intensity of radiation	26.(d)	Boron trihalides are Lewis acid due to having tendency to		
	but not upon its frequency that it can cause photoelectric emission.		accept electron pair. The order of their acidic strength is as $BF_3 < BCl_3 < BBr_3 < BI_3$. Less acidic nature of BF_3 is due to π - back bonding between p-p orbitals of B and F having comparable size.		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2080-2-13 Hints & Solution

27.(c)	Alkyne, alkadiene and cycloalkene have same general formula.	
28.(b)	Reductive ozonolysis of alkene gives mixture of carbonyl compounds.	
29.(c)	$\int \frac{x^5 - x^4}{x^3 - x^2} dx \qquad [\because e^{5/nx} = e^{/nx^5} = x^5]$	44.(c)
	$= \int \frac{x^4 (x-1)}{x^2 (x-1)} dx = \frac{x^3}{3} + c$	
30.(d)	$\lim_{x \to 0} \frac{1}{x} \cdot 3\tan^{-1}x$	
	$= 3. \lim_{x \to 0} \frac{\tan^{-1}x}{x} = 3.1 = 3$	45.(c)
31.(b)	$y_1 = ae^{ax+b}$	
	$y_2 = a^2 e^{ax+b}$	
	$(\mathbf{y}_2)_0 = \mathbf{a}^2 \cdot \mathbf{e}^{\mathbf{b}}$	46.(c)
32.(a)	$(\omega)^{66} = (\omega^3)^{22} = 1$	
33.(d)	$ax^2 + bx + c = 0 \ (\alpha, \beta)$	
	$cx^2 + bx + a = 0 \left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$	
34.(c)	AB = AC implies $B = C$	
	i.e. A^{-1} exist	47.(a)
	A is non-singular matrix	
35.(a)	Obvious	
36.(b)	$2\vec{a} = 2\vec{b}$	48.(d)
	$\vec{a} = \vec{b}$	
37.(c)	Centre: $X = 0 \& Y = 0$	49.(d)
	x + y - 2 = 0 & $x - y = 0$	55.(b)
	On solving: $x = 1 \& y = 1$	
	i.e. (1, 1)	61. (d)
38.(c)	Obvious	
39.(c)	Obvious	
40.(b)	$\frac{a}{\sin 30^\circ} = \frac{8}{\sin B}$	
	$\frac{7}{\frac{1}{2}} = \frac{8}{\sin B} \implies \sin B = \frac{4}{7}$	
	Two solutions: $B = \sin^{-1}\frac{4}{7} \& \pi - \sin^{-1}\frac{4}{7}$	
41.(c)	$0 \le \sin x \le 1$	(2)()
	min. value = 0	62.(a)
	and $ \text{secx} \ge 1$	
	min. value = 1	
42.(b)	Total number of ways = $(7 - 1)! = 720$ ways	
43.(a)	$(5+4x)^{-1/2} = \left[5\left(1+\frac{4x}{5}\right) \right]^{-1/2}$	

This is valid if
$$\left|\frac{4x}{5}\right| < 1$$

 $|x| < \frac{5}{4}$
4.(c) $(x_1, y_1) = (3, 4)$
Equation of the normal:
 $xy_1 = yx_1$
 $x.4 = 3y$
 $3y - 4x = 0$
5.(c) $A = \int_{-0}^{\pi/4} \sec^2 x dx$
 $= [\tan x]_{0}^{\pi/4} = \tan \frac{\pi}{4} - \tan 0 = 1$
6.(c) Normal is parallel to x-axis i.e. tangent line is parallel
to y-axis.
 $\frac{dy}{dx} = \infty$
 $\frac{dx}{dy} = 0$
7.(a) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
 $= \pi - \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$
8.(d) Taking option (d)
 $1^2 + (-1)^2 + (1)^2 \neq 1$
49.(d) 50.(a) 51.(b) 52.(c) 53.(b) 54.(a)
55.(b) 56.(c) 57.(a) 58.(d) 59.(d) 60.(b)
Section - 11
11.(d) $\tau = i\alpha$
or, $TR = \frac{1}{2}MR^2 \times \frac{a}{R}(\because a = R\alpha)$
or, $T = \frac{Ma}{2}$
Again, mg -T = ma
or, mg $-\frac{Ma}{2} = ma$
or, $mg = (m + \frac{M}{2})a$
or, $a = \frac{mg}{m + \frac{M}{2}} = \frac{2 \times 10}{2 + \frac{6}{2}} = 4 \text{ m/s}^2$
2.(a) Net Work done = change in KE
or, $\int_{X=20}^{X=30} Fdx = K.E.f - K.E.f$
or, $-0.1[\frac{\chi^2}{2}]_{20}^{30} = K.E.f - 500$

or, $-\frac{0.1}{2}(30^2 - 20^2) = \text{KE}_{\text{f}} - 500$ $\therefore \text{ KE}_{\text{f}} = 475 \text{ J}$

I	PEA Association Pvt. Ltd. Tha 2080	Kathmandu, Tel: 5345730, 5357187 & & Solution	
53.(d)	$T^2 \propto r^3$		
	The $\left(R + \frac{5R}{2}\right)^{3/2}$ (1) $3/2$		$\mu = \frac{1}{\sin C}$
	$\frac{T}{1} = \left(\frac{R + \frac{5R}{2}}{R + 6R}\right)^{3/2} = \left(\frac{1}{2}\right)^{3/2}$		or, $\mu = \frac{1}{\sin(\sin^{-1}\frac{3}{5})}$
	$\therefore T' = \left(\frac{1}{2}\right)^{3/2} \times 24 = 6\sqrt{2} \text{ hr}$		_
64.(b)	$P = e\sigma A T^4 = e\sigma 4\pi R^2 T^4$		or, $\mu = \frac{5}{3}$
4.(0)	$i = P \propto R^2 T^4$		Again,
	$\therefore \frac{P_1}{P_2} = \frac{R_1^2 T_1^4}{R_2^2 T_2^4} = (\frac{1}{4})^2 \times (\frac{4000}{2000})^4 = 1:1$		$\mu = \tan \theta_{\rm p} $
5.(b)	dW = PdV = nRdT = 100J		or, $\theta_{p} = \tan^{-1}(\frac{5}{3})$
	$\therefore dQ = nC_p dT$	72.(c)	$K_{eq} = \frac{2K_1K_2}{K_1 + K_2} = \frac{2 \times 3 \times 6}{3 + 6} = 4$
	$=$ n $\times \frac{7}{2}$ RdT		$\therefore C' = \frac{k_{eq}\epsilon_0 A}{d} = k_{eq} C_{air} = 4 \times 1 = 4\mu F$
	$=\frac{7}{2} dW = \frac{7}{2} \times 100 = 350 J$	73.(b)	$\frac{d}{d} = \frac{1}{4} - \frac{1}{4} + \frac{1}$
		/ J.(U)	$X = 3\Omega^2$ $X = 4\Omega$
5.(d)	$\frac{\mathrm{m}}{\mathrm{m}_0} = \left(\frac{1}{2}\right)^{\frac{\mathrm{L}}{\mathrm{T}_{1/2}}}$		$\therefore Z = \sqrt{R^2 + x^2} = \sqrt{3^2 + 4^2} = 5\Omega$
			Then, $\cos\theta = \frac{R}{Z} = \frac{3}{5} = 0.6$
	$m = 10\left(\frac{1}{2}\right)\frac{21}{T_{1/2}}$	74.(d)	Apparent distance = $(5 + 2) = 7$ cm
	$= 10\left(\frac{1}{2}\right)^{\frac{2 \times 1.44 \text{ T}_{1/2}}{\text{T}_{1/2}}}$		$\therefore \mu = \frac{\text{Real distance}}{\text{Apparent distance}}$
	(-)		or, Real distance = $1.5 \times 7 = 10.5$ cm
'.(a)	= 1.35g $r_n = (0.53 \times n^2) \text{ Å}$	75.(d)	1°-amine show position isomerism, 2°-amine s metamerism, 1°, 2° and 3° amines are function
	For ground state, $r_1 = 0.53$ Å ($\because n = 1$)	- (- (- (- (- (- (- (- (- (- (isomers.
	Then $\lambda_n = \frac{2\pi r_n}{n}$	76.(b)	Longest chain is the parent chain and functional g always gives the lowest possible number.
	or, $\lambda_1 = 2\pi r_1$	77.(a)	Since the number of molecules of each gases are s
(a)	or, $\lambda_1 = 2\pi \times 0.53 = 3.33$ Å F = BI/		due to identical conditions of P, V, T so its direction asking for the number of atoms in each ,molecule.
(a)	$= \mathbf{B} \times \frac{\mathbf{E}}{\mathbf{R}} \times l (\mathbf{E} = \text{induced emf})$	78.(a)	$W = \frac{E.i.t}{96500} = \frac{1 \times 0.4 \times 30 \times 60}{96500}$
		/ 0.(u)	$96500 = 7.46 \times 10^{-3} \mathrm{g}$
	$= \mathbf{B} \times \frac{\mathbf{B} \mathbf{v} l}{\mathbf{R}} \times l$		Volume = $\frac{7.46 \times 10^{-3} \times 22.4}{2}$ = 0.083 L
	$=\frac{\mathrm{B}^2l^2v}{\mathrm{R}}$	79.(d)	
	$=\frac{0.850^2 \times 0.85^2 \times 0.858}{0.750} = 0.598 \text{ N}$	80.(a)	$Zn + H_2SO_4 {\rightarrow} ZnSO_4 + H_2$
			$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$
.(c)	$I_g = \frac{150}{15} = 10 \text{mA} = 10 \times 10^{-3} \text{A}$	81.(c)	$\left(\frac{N_1}{N_0}\right) = \left\lceil \frac{1}{2} \right\rceil \frac{t}{T}$
	$G = 5\Omega$		$=\frac{67}{100} = \left(\frac{1}{2}\right) t_1/20 \dots(i)$
	$\therefore S = \frac{I_g \times G}{I - I_g} = \frac{10 \times 10^{-3} \times 5}{2 - 10 \times 10^{-3}} = 0.025\Omega$		
.(a)	$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$		$=\frac{33}{100}=\left(\frac{1}{2}\right)t_2/20$ (ii)
.()	$1 \sqrt{\mu}$ i.e. f $\propto \sqrt{T}$		Dividing (ii) by (i)
	$\therefore \frac{\Delta f}{f} = \frac{1}{2} \times \frac{\Delta T}{T}$	82.(a)	$\therefore t_1 - t_2 = 20 \text{ min.}$ $y = \sqrt{x - 3}$
		62.(d)	$y = \sqrt{x} = 3$ y is defined for $(x = 3) \ge 0$
	or, $\frac{\Delta f}{200} = \frac{1}{2} \times 1\%$		$x \ge 3$
	or, $\Delta f = \frac{1}{200} \times 200 = 1$		$D_f = [3, \infty)$ and: $y^2 = (x - 3)$
	200		$(x-3) \ge 0$

I	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187					
	2080-2-	13 Hints	s & Solution			
	$y^2 \ge 0 \Longrightarrow y \ge 0$	1	$ \vec{a} \times \vec{b} = 2$			
	Range = $[0, \infty)$		$\sin\theta = \frac{ \vec{a} \times \vec{b} }{ \vec{a} \vec{b} } = \frac{2}{\sqrt{7}}$			
83.(b)	Area = $2\int_{0}^{1} (x - x^2) dx$	00()	Plane: $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$			
		90.(a)	u u u			
	$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$		x + y + z = a (i) Passes the rough (2, 3, 4): $2 + 3 + 4 = a$			
	$=\frac{1}{2}$		i.e. $a = 9$			
			Required plane: $x + y + z = 9$			
84.(b)	$\cos^{-1}x\left(\frac{\pi}{2}-\cos^{-1}y\right)=\sin^{-1}y$	91.(b)	On solving: two points are $(0, 0)$ and $(4a, 4a)$			
	$\sin^{-1}\sqrt{1-x^2} = \sin^{-1}y$		Length of the common chord = $\sqrt{(4a-0)^2 + (4a-0)^2}$			
	$\sqrt{1-x^2} = y^2$ $1-x^2 = y^2$		$=4a\sqrt{2}$			
	$1 - x^2 = y^2$	92.(c)	$r_1r_2 + r_2r_3 + r_3r_1$			
	$1 = x^2 + y^2$		$=\frac{\Delta}{s-a}\frac{\Delta}{s-b}+\frac{\Delta}{s-b}\cdot\frac{\Delta}{s-c}+\frac{\Delta}{s-c}\cdot\frac{\Delta}{s-a}$			
85.(b)	$y_1 = ame^{mx} - bme^{-mx}$		5 4 5 6 5 6 5 6 5 6 5 4			
	$y_2 = am^2 e^{mx} + bm^2 e^{-mx}$		$=\Delta^2 \left[\frac{\mathbf{s} - \mathbf{c} + \mathbf{s} - \mathbf{a} + \mathbf{s} - \mathbf{b}}{(\mathbf{s} - \mathbf{a})(\mathbf{s} - \mathbf{b})(\mathbf{s} - \mathbf{c})} \right] \times \frac{\mathbf{s}}{5} = \mathbf{s}^2$			
	$= m^{2}(ae^{mx} + be^{-mx})$ $= m^{2}v$	93.(a)				
86.(b)	Putting $x = 2$		Bowlers Non-bowlers Selection			
	f(2) = 5		(5) (9)			
	$2^2 - 2p + 3 = 5$		4 7 $5c_4 \times 9c_7 = 180$			
87.(c)	p = 1 Put x - 2 = t ²		$\frac{5}{5} \qquad 6 \qquad \frac{{}^{5}c_{5} \times {}^{9}c_{6} = 84}{5}$			
a / 1(a)	dx = 2t dt		Total = 180 + 84 = 264			
	$I = \int \frac{2t dt}{(t^2 + 2 + 1).t}$	94.(a)	$\log_{e}(1+x) = \frac{x}{1} - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \frac{x^{6}}{6} + \dots \infty$			
	$\int \frac{dt}{2} = \frac{2}{t} - \frac{1}{t}$		Putting $x = 1$			
	$=\int \frac{dt}{t^2+3} = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) + c$		$\log_{e} 2 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots$			
	$=\frac{2}{\sqrt{3}}\tan^{-1}\left(\sqrt{\frac{x-2}{3}}\right)+c$		$=\frac{1}{12} + \frac{1}{34} + \frac{1}{56} + \dots$			
			1.2 5.4 5.0			
88.(a)	$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}}$	95.(c)	$m_1 + m_2 = -\frac{2h}{b} = \frac{k}{3}$ and $m_1m_2 = \frac{a}{b} = -\frac{1}{3}$			
	$d\left(\frac{4}{2}\pi r^3\right)$		Now, $m_1 + m_2 = 2m_1m_2$			
	$\frac{d\left(\frac{4}{3}\pi r^{3}\right)}{dt} = \frac{dr}{dt}$		$\frac{\mathbf{k}}{3} = -\frac{2}{3} \Rightarrow \mathbf{k} = -2$			
	$r = \frac{1}{2\sqrt{\pi}}$	96.(c)	Putting $n = 1$, in option (c), we get			
	•		1 (1^{st} term of 1^{st} group) Putting n = 2, we get			
89.(b)	$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & 4 \\ 2 & -2 & 4 \end{vmatrix}$		2 (1^{st} term of 2^{nd} group)			
09.(D)	$a \wedge b = \begin{bmatrix} 2 & -2 & 4 \\ 3 & 1 & 2 \end{bmatrix}$	97.(d)	98.(d) 99.(b) 100.(d)			
	$=-8\vec{i}+8\vec{j}+8\vec{k}$					
	or of tok	I				

DEA And the Det It d Thereathalt Vether _

...The End...