## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2080-2-13 Hints \& Solution

## Section - 1

1.(d) The time-period is independent of amplitude.
2.(d) $\frac{\text { K.E.trans }}{\text { K.E. }}=\frac{1}{1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}=\frac{1}{1+\frac{2}{5}}=\frac{5}{7}$
3.(c) $\mathrm{R}=\frac{\mathrm{u}^{2} \sin ^{2} 90^{\circ}}{\mathrm{g}}=\frac{\mathrm{u}^{2}}{\mathrm{~g}} \quad\left(\because \theta=45^{\circ}\right)$
$\mathrm{H}_{\max }=\frac{\mathrm{u}^{2} \sin 90^{\circ}}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{R}}{2}\left(\because \theta=90^{\circ}\right)$
4.(d) Apparent weight $\left(\mathrm{W}^{\prime}\right)=$ Actual Weight (W) - Upthrust (U)

For flotation, $\mathrm{W}=\mathrm{U}$
$\therefore \mathrm{W}^{\prime}=0$
5.(a)
$\mathrm{C}_{\mathrm{rms}}=\sqrt{\frac{\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}+\mathrm{C}_{4}{ }^{2}}{4}}=\sqrt{\frac{2^{2}+3^{2}+4^{2}+5^{2}}{4}}$ $=\frac{\sqrt{54}}{2} \mathrm{~cm} / \mathrm{s}$
6.(a) $\frac{\mathrm{C}}{5}=\frac{\mathrm{F}-32}{9}$
$\therefore \frac{1}{5} \Delta \mathrm{C}=\frac{1}{9} \Delta \mathrm{~F}$
or, $\Delta \mathrm{C}=\frac{5}{9} \Delta \mathrm{~F}$
If $\Delta \mathrm{F}=1^{\circ} \mathrm{F}$, then $\Delta \mathrm{C}=\frac{5}{9}{ }^{\circ} \mathrm{C}$
$\therefore$ Coefficient of linear expansion $=\frac{\alpha}{{ }^{\circ} \mathrm{F}}=\frac{\alpha}{\frac{5}{9}^{\circ} \mathrm{C}}=\frac{9 \alpha}{5}$
7.(b) $\quad$ Width of maxima (W) $\propto \lambda$

As $\lambda_{\mathrm{R}}>\lambda_{\mathrm{B}}$, then $\mathrm{W}_{\mathrm{R}}>\mathrm{W}_{\mathrm{B}}$
8.(c) $\quad \mathrm{f}=\frac{1}{l \mathrm{~d}} \sqrt{\frac{\mathrm{~T}}{\pi \rho}} \quad$ i.e. $\mathrm{f} \propto \frac{1}{\mathrm{~d}}$
then $\frac{f^{\prime}}{f}=\frac{d}{d^{\prime}}$
or, $f=\frac{d}{3 d} \times f$
or, $\mathrm{f}^{\prime}=\frac{\mathrm{f}}{3}$
9.(c) Electron is accelerated along field direction.
10.(c) $\mathrm{E}=\mathrm{kl}$
or, $\mathrm{l}=\frac{\mathrm{E}}{\mathrm{K}}=\frac{2}{0.5}=4 \mathrm{~m}$
12.(d) Photocurrent only depends upon intensity of radiation but not upon its frequency that it can cause photoelectric emission.
13.(a) $\frac{\left(\frac{q}{()_{p}}\right.}{\left(\frac{q}{m_{\alpha}}\right)}=\frac{\frac{e}{m_{p}}}{\frac{2 e}{4 m_{p}}}=2: 1$
14.(b) $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{Q}}{\mathrm{r}^{2}}$
$\mathrm{E}^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{r}^{2}}=\frac{\mathrm{E}}{2}$
15.(a) Metals have positive temperature coefficient of resistance while semiconductors have negative temperature coefficient of resistance.
16.(b) $E=\alpha \theta+\frac{1}{2} \beta \theta^{2}$
$\left.\therefore \frac{\mathrm{dE}}{\mathrm{d} \theta}\right|_{\theta=\theta \mathrm{n}}=0$
or, $\alpha+\beta \theta_{\mathrm{n}}=0$
or, $\theta_{n}=-\frac{\alpha}{\beta}$
17.(c) $\mathrm{mg}-\mathrm{T}_{\max }=\mathrm{ma}_{\text {min }}$
or, $\mathrm{mg}-\frac{3}{4} \mathrm{mg}=$ ma $_{\text {min }}$
or, $\frac{1}{4} \mathrm{mg}=\mathrm{ma}_{\text {min }}$
or, $\mathrm{a}_{\text {min }}=\frac{\mathrm{g}}{4}$
18.(a) For $0.1 \mathrm{M} \mathrm{HCl},\left[\mathrm{H}^{+}\right]=10^{-1} \Rightarrow \mathrm{pH}=1$
$\Rightarrow \mathrm{pOH}=13 \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-13} \mathrm{~mol} / \mathrm{dm}^{3}$
19.(b) Lymann series:UV region

Balmer series: - Visible region
Paschen and Brackett series:- IR region
20.(c) Wt. in gm of solute
$=\frac{\mathrm{NxV}_{(\mathrm{mc})} \mathrm{x} \mathrm{Eq} \cdot \mathrm{wt}}{1000}=\frac{0.1 \mathrm{x} 1000}{1000} \times \frac{294}{6}$
22.(a) No. of gr. eq ${ }^{\mathrm{v}}$. of Oxygen $=8 / 8=1$

So, No. of gr. eq ${ }^{\mathrm{v}}$. of metals to react $=1$
$\therefore \quad$ wt. of metal $=$ gr. eqv. wt. $=31.75 \mathrm{~g}$
23.(d) In group atomic size increases with increasing atomic number.
24.(b) $\mathrm{H}_{2} \mathrm{O}$ is liquid while $\mathrm{H}_{2} \mathrm{~S}$ is gas, because hydrogen bond in $\mathrm{H}_{2} \mathrm{O}$
25.(b) The bond order of $\mathrm{O}_{2}, \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
$\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
26.(d) Boron trihalides are Lewis acid due to having tendency to accept electron pair. The order of their acidic strength is as $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<\mathrm{BI}_{3}$. Less acidic nature of $\mathrm{BF}_{3}$ is due to $\pi$ - back bonding between p-p orbitals of $B$ and $F$ having comparable size.

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

 2080-2-13 Hints \& Solution27.(c) Alkyne, alkadiene and cycloalkene have same general formula.
28.(b) Reductive ozonolysis of alkene gives mixture of carbonyl compounds.
29.(c)
$\int \frac{x^{5}-x^{4}}{x^{3}-x^{2}} d x$
$\left[\because e^{5 \ln x}=e^{\ln x^{5}}=x^{5}\right]$
$=\int \frac{x^{4}(x-1)}{x^{2}(x-1)} d x=\frac{x^{3}}{3}+c$
$\lim _{x \rightarrow 0} \frac{1}{x} \cdot 3 \tan ^{-1} x$
=3. $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=3.1=3$
31.(b) $y_{1}=a e^{a x+b}$
$y_{2}=a^{2} e^{a x+b}$
$\left(\mathrm{y}_{2}\right)_{0}=\mathrm{a}^{2} \cdot \mathrm{e}^{\mathrm{b}}$
32.(a) $(\omega)^{66}=\left(\omega^{3}\right)^{22}=1$
33.(d) $a x^{2}+b x+c=0(\alpha, \beta)$
$c x^{2}+b x+a=0\left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$
34.(c) $\mathrm{AB}=\mathrm{AC}$ implies $\mathrm{B}=\mathrm{C}$
i.e. $\mathrm{A}^{-1}$ exist

A is non-singular matrix
35.(a) Obvious
36.(b) $\quad 2 \vec{a}=2 \vec{b}$
$\vec{a}=\vec{b}$
37.(c) Centre: $\mathrm{X}=0 \& \mathrm{Y}=0$
$x+y-2=0 \quad \& x-y=0$
On solving: $x=1 \& y=1$
i.e. $(1,1)$
38.(c) Obvious
39.(c) Obvious
40.(b) $\frac{a}{\sin 30^{\circ}}=\frac{8}{\sin B}$
$\frac{7}{\frac{1}{2}}=\frac{8}{\sin B} \quad \Rightarrow \sin B=\frac{4}{7}$
Two solutions: $B=\sin ^{-1} \frac{4}{7} \& \pi-\sin ^{-1} \frac{4}{7}$
41.(c) $\quad 0 \leq|\sin x| \leq 1$
$\min$. value $=0$
and $|\sec x| \geq 1$
$\min$. value $=1$
42.(b) Total number of ways $=(7-1)$ ! $=720$ ways
43.(a) $\quad(5+4 x)^{-1 / 2}=\left[5\left(1+\frac{4 x}{5}\right)\right]^{-1 / 2}$

This is valid if $\left|\frac{4 x}{5}\right|<1$
$|x|<\frac{5}{4}$
44.(c)
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(3,4)$
Equation ofthe normal:
$\mathrm{xy}_{1}=\mathrm{yx}_{1}$
$\mathrm{x} .4=3 \mathrm{y}$
$3 y-4 x=0$
45.(c) $\quad \mathrm{A}=\int_{0}^{\pi / 4} \sec ^{2} x d x$
$=[\tan \mathrm{x}]_{0}^{\pi / 4}=\tan \frac{\pi}{4}-\tan 0=1$
46.(c) Normal is parallel to $x$-axis i.e. tangent line is parallel to $y$-axis.
$\frac{d y}{d x}=\infty$
$\frac{d x}{d y}=0$
47.(a) $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
$=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
48.(d) Taking option (d)
$1^{2}+(-1)^{2}+(1)^{2} \neq 1$
50.(a) 51.(b) 52.(c) 53.(b) 54.(a)
56.(c) 57.(a) 58.(d) 59.(d) 60.(b)

## Section - II

61. (d) $\tau=\mathrm{I} \alpha$
or, $\quad \mathrm{TR}=\frac{1}{2} \mathrm{MR}^{2} \times \frac{\mathrm{a}}{\mathrm{R}}(\because \mathrm{a}=\mathrm{R} \alpha)$
or, $\quad T=\frac{M a}{2}$
Again, $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
or, $m g-\frac{\mathrm{Ma}}{2}=\mathrm{ma}$
or, $\quad \mathrm{mg}=\left(\mathrm{m}+\frac{\mathrm{M}}{2}\right) \mathrm{a}$
or, $\quad a=\frac{m g}{m+\frac{M}{2}}=\frac{2 \times 10}{2+\frac{6}{2}}=4 \mathrm{~m} / \mathrm{s}^{2}$
62.(a) Net Work done $=$ change in KE
or, $\quad \int_{x=20}^{x=30} F d x=$ K.E. $f$ - K.E. $i$
or, $-0.1\left[\frac{x^{2}}{2}\right]_{20}^{30}=$ K.E.f -500
or, $\quad-\frac{0.1}{2}\left(30^{2}-20^{2}\right)=\mathrm{KE}_{\mathrm{f}}-500$
$\therefore \quad \mathrm{KE}_{\mathrm{f}}=475 \mathrm{~J}$

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

## 2080-2-13 Hints \& Solution

| 63.(d) | $\mathrm{T}^{2} \propto \mathrm{r}^{3}$ |
| :---: | :---: |
|  | $\frac{\mathrm{T}^{\prime}}{1}=\left(\frac{\mathrm{R}+\frac{5 \mathrm{R}}{2}}{\mathrm{R}+6 \mathrm{R}}\right)^{3 / 2}=\left(\frac{1}{2}\right)^{3 / 2}$ |
|  | $\therefore \quad \mathrm{T}^{\prime}=\left(\frac{1}{2}\right)^{3 / 2} \times 24=6 \sqrt{2} \mathrm{hr}$ |
| 64.(b) | $\begin{aligned} & \mathrm{P}=\mathrm{e} \sigma A \mathrm{~T}^{4}=\mathrm{e} \sigma 4 \pi \mathrm{R}^{2} \mathrm{~T}^{4} \\ & \text { i.e } \mathrm{P} \propto \mathrm{R}^{2} \mathrm{~T}^{4} \end{aligned}$ |
|  | $\therefore \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{R}_{1}{ }^{2} \mathrm{~T}_{1}{ }^{4}}{\mathrm{R}_{2}{ }^{2} \mathrm{~T}_{2}{ }^{4}}=\left(\frac{1}{4}\right)^{2} \times\left(\frac{4000}{2000}\right)^{4}=1: 1$ |
| 65.(b) | $\begin{aligned} & \mathrm{dW}=\mathrm{PdV}=\mathrm{nRdT}=100 \mathrm{~J} \\ & \therefore \mathrm{dQ}=\mathrm{nC}_{\mathrm{p}} \mathrm{dT} \end{aligned}$ |
|  | $=\mathrm{n} \times \frac{7}{2} \mathrm{RdT}$ |
|  | $=\frac{7}{2} d W=\frac{7}{2} \times 100=350 J$ |
| 66.(d) | $\frac{\mathrm{m}}{\mathrm{~m}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{~T}_{1 / 2}}}$ |
|  | $\mathrm{m}=10\left(\frac{1}{2}\right)^{\frac{2 \mathrm{~T}}{\mathrm{~T}_{1 / 2}}}$ |
|  | $=10\left(\frac{1}{2}\right)^{\frac{2 \times 1.44 \mathrm{~T}_{1 / 2}}{\mathrm{~T}_{1 / 2}}}$ |
|  | $=1.35 \mathrm{~g}$ |
| 67.(a) | $\mathrm{r}_{\mathrm{n}}=\left(0.53 \times \mathrm{n}^{2}\right) \AA$ |
|  | For ground state, $\mathrm{r}_{1}=0.53 \AA \quad(\because \mathrm{n}=1)$ |
|  | Then $\lambda_{n}=\frac{2 \pi r_{n}}{n}$ |
|  | or, $\lambda_{1}=2 \pi r_{1}$ |
|  | or, $\lambda_{1}=2 \pi \times 0.53=3.33 \AA$ |
| 68.(a) | $\mathrm{F}=\mathrm{BI} l$ |
|  | $=\mathrm{B} \times \frac{\mathrm{E}}{\mathrm{R}} \times l \quad(\mathrm{E}=\text { induced emf })$ |
|  | $=\mathrm{B} \times \frac{\mathrm{B} v l}{\mathrm{R}} \times l$ |
|  | $=\frac{\mathrm{B}^{2} l^{2} v}{\mathrm{R}}$ |
|  | $=\frac{0.850^{2} \times 0.85^{2} \times 0.858}{0.750}=0.598 \mathrm{~N}$ |
| 69.(c) | $\mathrm{I}_{\mathrm{g}}=\frac{150}{15}=10 \mathrm{~mA}=10 \times 10^{-3} \mathrm{~A}$ |
|  | $\mathrm{G}=5 \Omega$ |
|  | $\therefore \mathrm{S}=\frac{\mathrm{I}_{\mathrm{g}} \times \mathrm{G}}{\mathrm{I}-\mathrm{I}_{\mathrm{g}}}=\frac{10 \times 10^{-3} \times 5}{2-10 \times 10^{-3}}=0.025 \Omega$ |
| 70.(a) | $\mathrm{f}=\frac{1}{2 l} \sqrt{\frac{\mathrm{~T}}{\mu}}$ |
|  | i.e.f $\propto \sqrt{T}$ |
|  | $\therefore \frac{\Delta \mathrm{f}}{\mathrm{f}}=\frac{1}{2} \times \frac{\Delta \mathrm{T}}{\mathrm{~T}}$ |
|  | $\text { or, } \frac{\Delta \mathrm{f}}{200}=\frac{1}{2} \times 1 \%$ |
|  | $\text { or, } \Delta f=\frac{1}{200} \times 200=1$ |

71.(c) $\mu=\frac{1}{\sin \mathrm{C}}$
or, $\mu=\frac{1}{\sin \left(\sin ^{-1} \frac{3}{5}\right)}$
or, $\mu=\frac{5}{3}$
Again,
$\mu=\tan \theta_{p}$
or, $\theta_{\mathrm{p}}=\tan ^{-1}\left(\frac{5}{3}\right)$
72.(c) $\mathrm{K}_{\mathrm{eq}}=\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}=\frac{2 \times 3 \times 6}{3+6}=4$
$\mathrm{C}^{\prime}=\frac{\mathrm{k}_{\mathrm{eq}} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\mathrm{k}_{\mathrm{eq}} \mathrm{C}_{\text {air }}=4 \times 1=4 \mu \mathrm{~F}$
73.(b) $\mathrm{R}=3 \Omega$
$\mathrm{X}=4 \Omega$
$\therefore \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{x}^{2}}=\sqrt{3^{2}+4^{2}}=5 \Omega$
Then, $\cos \theta=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{3}{5}=0.6$
74. (d) Apparent distance $=(5+2)=7 \mathrm{~cm}$
$\therefore \quad \mu=\frac{\text { Real distance }}{\text { Apparent distance }}$
or, Real distance $=1.5 \times 7=10.5 \mathrm{~cm}$
75.(d) $1^{\circ}$-amine show position isomerism, $2^{\circ}$-amine show metamerism, $1^{\circ}, 2^{\circ}$ and $3^{\circ}$ amines are functional isomers.
76.(b) Longest chain is the parent chain and functional group always gives the lowest possible number.
77.(a) Since the number of molecules of each gases are same due to identical conditions of $\mathrm{P}, \mathrm{V}, \mathrm{T}$ so its directly asking for the number of atoms in each , molecule.
78.(a) $\quad \begin{aligned} \mathrm{W} & =\frac{\mathrm{E} . \mathrm{i} . \mathrm{t}}{96500}=\frac{1 \times 0.4 \times 30 \times 60}{96500} \\ & =7.46 \times 10^{-3} \mathrm{~g}\end{aligned}$
$=7.46 \times 10^{-3} \mathrm{~g}$
Volume $=\frac{7.46 \times 10^{-3} \times 22.4}{2}=0.083 \mathrm{~L}$
79.(d)
80.(a) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
$\mathrm{Zn}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
81.(c) $\left(\frac{N_{1}}{N_{o}}\right)=\left[\frac{1}{2}\right] \frac{\mathrm{t}}{\mathrm{T}}$
$=\frac{67}{100}=\left(\frac{1}{2}\right) \mathrm{t}_{1} / 20$
$=\frac{33}{100}=\left(\frac{1}{2}\right) \mathrm{t}_{2} / 20$ $\qquad$
Dividing (ii) by (i)
$\therefore \quad \mathrm{t}_{1}-\mathrm{t}_{2}=20 \mathrm{~min}$.
$\mathrm{y}=\sqrt{\mathrm{x}-3}$
$y$ is defined for $(x-3) \geq 0$
$x \geq 3$
$\mathrm{D}_{\mathrm{f}}=[3, \infty)$
and: $y^{2}=(x-3)$
$(x-3) \geq 0$

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

 2080-2-13 Hints \& Solution```
    \(\mathrm{y}^{2} \geq 0 \Rightarrow \mathrm{y} \geq 0\)
    Range \(=[0, \infty)\)
83.(b) \(\operatorname{Area}=2 \int_{0}\left(x-x^{2}\right) d x\)
    \(=2\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}\)
    \(=\frac{1}{3}\)
84.(b) \(\cos ^{-1} x\left(\frac{\pi}{2}-\cos ^{-1} y\right)=\sin ^{-1} y\)
\(\sin ^{-1} \sqrt{1-x^{2}}=\sin ^{-1} y\)
\(\sqrt{1-x^{2}}=y^{2}\)
\(1-x^{2}=y^{2}\)
\(1=x^{2}+y^{2}\)
85.(b) \(y_{1}=a m e^{m x}-b m e^{-m x}\)
\(\mathrm{y}_{2}=\mathrm{am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{bm}^{2} \mathrm{e}^{-\mathrm{mx}}\)
\(=\mathrm{m}^{2}\left(\mathrm{ae}^{\mathrm{mx}}+\mathrm{be}^{-\mathrm{mx}}\right)\)
\(=\mathrm{m}^{2} \mathrm{y}\)
86.(b) Putting \(x=2\)
\(\mathrm{f}(2)=5\)
\(2^{2}-2 p+3=5\)
\(\mathrm{p}=1\)
87.(c) Put \(\mathrm{x}-2=\mathrm{t}^{2}\)
\(\mathrm{dx}=2 \mathrm{tdt}\)
\(I=\int \frac{2 t d t}{\left(t^{2}+2+1\right) \cdot t}\)
\(=\int \frac{\mathrm{dt}}{\mathrm{t}^{2}+3}=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\mathrm{t}}{\sqrt{3}}\right)+\mathrm{c}\)
\(=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\sqrt{\frac{x-2}{3}}\right)+c\)
88.(a) \(\frac{d v}{d t}=\frac{d r}{d t}\)
\(\frac{d\left(\frac{4}{3} \pi r^{3}\right)}{d t}=\frac{d r}{d t}\)
\(r=\frac{1}{2 \sqrt{\pi}}\)
89.(b) \(\quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & 4 \\ 3 & 1 & 2\end{array}\right|\)
\(=-8 \vec{i}+8 \vec{j}+8 \vec{k}\)
```

| $\sin \theta=\frac{\|\vec{a} \times \vec{b}\|}{\|\vec{a}\| \cdot\|\vec{b}\|}=\frac{2}{\sqrt{7}}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 90.(a) | Plane: $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{a}}+\frac{\mathrm{z}}{\mathrm{a}}=1$ |  |  |
|  | Passes the rough ( $2,3,4$ ): $2+3+4=a$ i.e. $\mathrm{a}=9$ |  |  |
|  | Required plane: $\mathrm{x}+\mathrm{y}+\mathrm{z}=9$ |  |  |
| 91.(b) | On solvin Length of $\begin{aligned} & =\sqrt{(4 a-1} \\ & =4 a \sqrt{2} \end{aligned}$ | wo points are common chor $+(4 a-0)^{2}$ | $0)$ and (4a, 4a) |
| 92.(c) | $\begin{aligned} & \mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{r}_{2} \mathrm{r}_{3} \\ & =\frac{\Delta}{\mathrm{s}-\mathrm{a}} \frac{\Delta}{\mathrm{~s}-} \\ & =\Delta^{2}\left[\frac{\mathrm{~s}-}{\mathrm{s}}\right. \end{aligned}$ | $\begin{aligned} & +\frac{\Delta}{s-b} \cdot \frac{\Delta}{s-c}+ \\ & +s-a+s-b \\ & (s-b)(s-c) \end{aligned}$ | $\begin{aligned} & \frac{\Delta}{-c} \cdot \frac{\Delta}{s-a} \\ & \times \frac{s}{5}=s^{2} \end{aligned}$ |
| 93.(a) |  |  |  |
|  | Bowlers (5) | Non-bowlers <br> (9) | Selection |
|  | 4 | 7 | ${ }^{5} \mathrm{C}_{4} \times{ }^{9} \mathrm{C}_{7}=180$ |
|  | 5 | 6 | ${ }^{5} \mathrm{c}_{5} \times{ }^{9} \mathrm{c}_{6}=84$ |

Total $=180+84=264$
$\log _{e}(1+x)=\frac{x}{1}-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+$ $\qquad$
Putting $\mathrm{x}=1$
$\log _{\mathrm{e}} 2=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots$ $=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots \ldots$.
95.(c)
$\mathrm{m}_{1}+\mathrm{m}_{2}=-\frac{2 \mathrm{~h}}{\mathrm{~b}}=\frac{\mathrm{k}}{3}$ and $\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}=-\frac{1}{3}$
Now, $\mathrm{m}_{1}+\mathrm{m}_{2}=2 \mathrm{~m}_{1} \mathrm{~m}_{2}$
$\frac{\mathrm{k}}{3}=-\frac{2}{3} \quad \Rightarrow \mathrm{k}=-2$
96.(c) Putting $\mathrm{n}=1$, in option (c), we get

1 ( $1^{\text {st }}$ term of $1^{\text {st }}$ group)
Putting $\mathrm{n}=2$, we get
2 ( $1^{\text {st }}$ term of $2^{\text {nd }}$ group)
98.(d) 99.(b) 100.(d)

